
SOFTWARE MANUAL

AMOS
MONITOR CALLS

DWM-0010042

REV. BOO

alpha
micro

SORWARE MANUAL

AMOS
MONITOR CALLS

DWM-0010042

REV. BOO

alpha
micra

AMOS MONITOR CALLS MANUAL

First printing: 1978
Second printing: 1979
Third printing: 30 April 1981

C-2MD-4/81

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'AlphaPASCAL', 'AlphaLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This manual reflects AMOS version 4.5 and later.

~1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

Page ii

AMOS MONITOR CALLS MANUAL Page iii

PPFFACE

One of the major featurps of the A~OS operating ~ystem is the Large number
of monitor calLs avaiLablp to the assembLy language programmer. By making
most common routineq aVAiLabLe in the monitor, AMOS frees the programmer
from having to repetitiveLy write the same routine. This manuaL describes
thp.se monitor caLls.

We assume that the reader af this manuaL is famiLiar with assembLy Language
programming and the AM-100 instruction set. We eLsa assump that the reader
is famiLi8r with the AM-100 macro assembLy system described in the AMOS
AsspmbLy Languaqe Programmpr's Rpference ManuaL (DWM-00100-43). This
reference manual 15 most emphat1cally NoT a tutoriaL on assembLy Language
programming. Many such ~lrtoriaLs exist; if you are just Learning assembLy
language, you should consult such a book before reading this manuaL.

A~OS MONITOR CALLS MANUAL PagE" v

CHAPTER 1

CHAPTER 2

CHAPTER 3

Table of Contents

COMMUNICATING WITH THE AM-100 MONITOR

1.1 MONtTOR CALL CALLING FORMAT •••••••••••••••••• 1-1
1 • 1 • 1 Po. r 9 urn e nt s ••••••••••••••••••••••••••••• 1-1
1.1.2 Standard Address Ar~uments •••••••••••• 1-2

JOB SCHEDULING AND CONTROL SYSTEM

2.1 THE JOB CONT~OL BLOCK (JCB) •••••••••••••••••• 2-1
2.1.1 Example - Scanning The Job

Control Area ••••••••••••••••••••••••• 2-?
2.2 ACCESSING YOUR JCB •••••.••••••••••••••••••••• 2-3

2.2.1 Calling Sequence •••••••••••••••••••••• 2-3
2.3 JOB SCHEDULING CALLS ••••••••••••••••••••••••• 2-3

2.3.1 SLEEP - PUT JOB TO SLEEP •••••••••••••• 2-3
2.3.2 WAKE - WAKE UP JOB •••••••••••••••••••• 2-4

2.4 JOB CONTROL BLOCK FORMAT ••••••••••••••••••••• 2-4
2.4.1 JOBSTS - The Job Status Word •••••••••• ?-4
2.4.2 JOBSPR - The Stack Pointer Reset

Address ..••••.•••••.•••.•••• 2-5
2.4.) JOBNAM - The Job NamE" ••••••••••••••••• 2-5
?.4.4 JOBBAS - The ME"mory BasE" Address •••••• ~-5
2.4.5 JOBSIZ - The Memory Partition Size •••• 2-5
?.4.6 JOBUSR - The Current PPN •••••••••••••• 2-6
2.4.7 JOBPRV - The Privilege Word ••••••••••• 2-6
2.4.8 J08PRG - The Current Program NamE" ••••• 2-6
?.4.Q JOBCMZ - The Command File SizE" •••••••• 2-6
2.4.10 JOBCMS - The Command File Status •••••• ?-6
2.4.11 JOBERC - The Error Control Address •••• 2-7
2.4.12 JOBTYP - The Job Type ••••••••••••••••• ?-7
2.4.13 JOBAPT - The Rreakpoint Address ••••••• 2-7
2.4.14 JOBRNK - The Memory Bonk Pointer •••••• 2-7
2.4.15 JOBDEV - The Default Device ••••••••••• 2-7
2.4.16 JOBDRV - The Default Drive •••••••••••• 2-8
2.4.17 JOBTR~ - The TE"rminal Block Pointer ••• 2-8
2.4.18 JOBRBK - The Run Control Block •••••••• 2-8
2.4.19 JOBFPE - The Floating-Point Tr~p

Address •••.••••••••••••.•••. 2-9
2.4.20 JOBRNQ - The Scheduling Areo •••••••••• 2-9
2.4.21 JOBDYS - The DYSTAT Address ••••••••••• 2-9
2.4.22 JOBSTK - The Job's Stack Area ••••••••• 2-9

MEMORY CONTROL SYSTEM CALLS

3.1 MEMORY PARTITIO~ FOR~AT •••••••••••••••••••..• 3-2
3.2 MEMORY MODULE FORMAT ••••••••••••••••••••••••• 3-5
3.3 MANIPULATING MEMORY MODULES •••••••••••••••••• 3-6

3.3.1 Allocating 8 Memory Module •••••••••••• 3-8

AMOS MONITOR CALLS MANUAL Page

CHAPTER 4

CHAPTER 5

CHAPTER 6

3.3.2 Changing a Memory ModuLe ••••••••••••••
3.3.3 DeLeting a Memory ModuLe ••••••••••••••
3.3.4 Permanent and Temporary ModuLes •••••••

3-8
3-8
3-8

3.4 MFMORY MAPPING SYSTEM ••••••••••••••••••••••••
3.4.1 InternaL TabLe Format •••••••••••••••••

3.4.1.1 The MEMDEF Word ••••••••••••••
3.4.1.2 The JOBBNK Word ••••••••••••••

3.4.2 The Bank Switching Process ••••••••••••
3.4.3 The BNKSWP Monitor CaLL •••••••••••••••
3.4.4 The DMADDR Monitor CaLL (For Memory

3-9
3-10
3-10
3-11
3-12
3-12

Partition ControLLer) •••••••••••••••• 3-13

LOADING AND LOCATING MEMORY MODULES

4.1 THE SRCH AND FETCH CALLS ••••••••••••••••••••• 4-1
4.1.1 Specifying the ModuLe Name •••••••••••• 4-1
4.1.2 The ModuLe Address •••••••••••••••••••• 4-2
4.1.3 FLags ••••••••••••••••••••••••••••••••• 4-2

4.1.t.

4.1.3.1 F.FCH - Fetch ModuLe
From Disk •••••••••••• 4-2

4.1.3.2 F.USR - Bypass System
Memory Search ••••••• 4-3

4.1.3.3 F.ABS - Bypass Memory Se~rch .4-3
4.1.~.4 F.FIL - Mark ModuLe as

Permanent
CompLetion Codes

4-3
4-3

MONITOR QUEU~ SYSTEM CALLS

5.1 INCREASING THE AV~IL~BLE QUEUE LIST SIZE ••••• 5-1
5.2 QUEUE BLOCK USAGF BY THE SYSTEM •••••••••••••• 5-2
5.3 QUEUF SYSTEM MONITOR C~LLS ••••••••••••••••••• 5-3

5.3.1 QGET - Obtain a Free Queue BLork •••••• 5-3
5.3.2 QRET - Return a Queue BLock ••••••••••• 5-3
5.3.3 QADD, QINS - Manipulating Queue BLocks 5-3

THE FILE SERVICE SYSTEM

6.1 THE DATASFT DRIVER BLOCK ••••••••••••••••••••• 6-1
6.1.1 DDB Format •••..•.•...•••.•.•••.•..•••• 6-2

0.1.1.1 Error Code ••••••••••••••••••• 6-2
6.1.1.2 FLaas •••••••••••••••••••••••• 6-4
6.1.1.3 Buffer Addrpss ••••••••••••••• 0-4
6.1.1.4 Record Siz~ •••••••••••••••••• 6-4
6.1.1.5 Ruffer Jndex ••••••••••••••••• 0-4
~.1.1.n Record Number •••••••••••••••• 6-5
6.1.1.7 ~ueue r.hain Link ••••••••••••• 6-5
~.1.1.8 JCB Address •••••••••••••••••• 6-5
6.1.1.9 Job Priority ••••••••••••••••• 6-5
0.1.1.10 Device Code •••••••••••••••••• 0-5
6.1.1.11 Drive •••••••••••••••••••••••• 6-5
6.1.1.1? CnLL LeveL ••••••••••••••••••• 6-5
6.1.1.13 FiLename and Extension ••••••• 6-6

vi

AMOS MONITOR CALLS MANUAL

6.1.2
6.1.~

6.1.1.14 PPN ••••••••••••••••••••••••••
6.1.1.15 Open Code ••••••••••••••••••••
6.1.1.16 Driver Work Area •••••••••••••
Device Transfer Buffers •••••••••••••••
Error HandLing ••••••••••••••••••••••••
6.1.3.1 Error Codes ••••••••••••••••••

6.2 FILE SERVICE MONITOR CALLS •••••••••••••••••••
0.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

6.2.7

FSPEC - Process an ASCII FiLespec •••••
INIT - Initi~Lize the DDS •••••••••••••
LOOKUP - Find the FiLe ••••••••••••••••
OPENI - Open a FiLe for Input •••••••••
OPENO - Open a FiLe for Cutput ••••••••
OPENA - Open and Append to

Existing FiLe •••••••••••••••••
OPENR - Open a FiLe for Random

Processing ••••••••••••••••••••
6.2.8 CLOSE - CLose a FiLe •••..••....•••••.•
6.2.9 READ - Perform a PhysicaL Transfer ••••

6.2.9.1 SequentiaL Devices •••••••••••
6.2.9.~ Random Devices •••••••••••••••
6.2.9.3 Interrupt Structure ••••••••••

6.2.10 WRITE - Perform a PhysicaL Write ••••••
6.2.10.1 Sequential Devices •••••••••••
6.2.10.2 Random Devices •••••••••••••••
6.2.10.3 Interrupt Structure ••••••••••

6.2.11 INPUT - Perform a LogicaL Read ••••••••
6.2.11.1 SequentiaL FiLe Processing •••

6.2.11.1.1 ExampLe ••••••••••
6.2.11.2 Random FiLe Processing •••••••
6.2.11.3 Special Devices ••••••••••••••

6.2.12 OUTPUT - Perform a LogicaL Write •••..•
6.2.12.1 SequentiaL FiLe Processing •••

6.2.1?1.1 ExampLe ••••••••••
6.2.12.2 Random FiLe Processing •••••••
6.2.12.3 SpeciaL Devices ••••••••••••••

n.2.13 DELETE - DeLete a FiLe ••••••••••••••••
6.2.14 RENAME - Ren~me a FiLe ••••••••••••••••
6.2.15 ASSIGN - Assign a Device ••••••••••••••
6.2.16 DEASGN - Deassign a Device ••••••••••••

6.) DISK SERVICE MONITOR CALLS •••••••••••••••••••
6.3.1 CaLLing Sequence ••••••••••••••••••••••
6.3.2 The Bitmap Area •••••••••••••••••••••••

6.3.2.1 The Status Word ••••••••••••••
6.3.2.2 The Bitmap DDB •••••••••••••••
6.3.2.3 The Bitmap Buffe •••••••••••••
6.3.2.4 The Bitmap •••••••••••••••••••
6.3.2.5 ALtering the Bitmap ••••••••••

6.3.3 DSKCTG - ALLocate a Contiguous Area •••
6.3.4 DSKALC - ALLocate a Record ••••••••••••
6.3.5 DSKDEA - DeaLLocate a Record ••••••••••
6.3.6 DSKBMR - Read the Bitmap ••••••••••••••

Page vii

6-6
6-6
6-6
6-6
6-7
6-7
6-8
6-8
6-9
6-10
6-10
6-10

6-10

6-11
6-11
6-11
6-11
6-11
6-12
6-12
6-12
6-12
6-12
6-13
6-13
6-13
6-13
6-14
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-17
6-17
6-18
6-18
6-18
6-18
6-19
6-19

AMOS ~ONITOR CALLS ~ANUAL Page viii

CHAPTER 7

CHAPTER 8

6.3.7 OSKBMW - Write the Bitmap ••••••••••••• ~-19
6.3.8 DSKORL - Lock the Oirectory ••••••••••• 6-19
6.3.9 DSKDRU - UnLock the Directory ••••••••• 6-20

6.4 MAG~ETJC TAPE DRIVER MONITOR CALLS ••••••••••• 6-70
6.4.1 REWIND Arg ••••••.••••.•••.••.•.•.••••• 6-20
6.4.2 WRTFM Ar~ ••••••••••••••••••••••••••••• 6-20
6.4.3 FMARK Arg •••.•.•.•.•••....•....•...•.• n-?1
6.4.4 FMARKR Arg •••••••.•.•••••.•..•••..•••• 6-21
6.4.5 TAPST Arg1,Arg2 ••••••••••••••••••••••• 6-21

TERMINAL SERVICE SYSTEM

7.1 TERMINOLOGy •••••••••••••••••••••••••••••••••• 7-1
7.2 THE TERMINAL LINE TABLE •••••••••••••••••••••• 7-2

7.2.1 The TerminaL Status Word •••••••••••••• 7-2
7.3 THE TERMINAL SERVICE CALLS ••••••••••••••••••• 7-2

7.3.1 KBD {LabeL} - Fetch a Line of Data •••• 7-2
7.3.? TTY - Output One Character •••••••••••• 7-3
7.3.3 TIN - Get an Input Character •••••••••• 7-3
7.3.4 TOUT - Output One Character ••••••••••• 7-~
7.3.5 TAB - Output One Tab •••••••••••••••••• 7-3
7.3.6 CRLF - Output ~ Carriage-Return I

Line-Feed •••••.•••...•••••.••.• 7-4
7.3.7 TTYI - Output a Strin~ of Characters •• 7-4
7.3.8 TTYL - Output a String of Ch8racters

Ind~xed •••••••••••••••••••••••• 7-4
7.3.9 PTYIN - PLace Character in Input

Buffer ••••••••.••••••••.••..••. 7-4
7.3.10 PTYOUT - Fetch Character from Output

Buffer •••••••.•••••••.•••.••• 7-5
7.3.11 TTYIN - Fetch Another Job's Input ••••• 7-5
7.3.12 TTY OUT - PLace a Character in Another

Job's Output ••••••••••••••••• 7-5
7.3.13 TRMICP - Process Input Character

Within Interface Driver •••••• 7-5
7.3.14 TRMOCP - Process Output Character

Within Interface Driver •••••• 7-5
7.3.15 TRMBFQ - Process Output Characters

Within TerminaL Driver ••••••• 7-6
7.3.16 TaUF - Output Large Amounts of D~ta ••• 7-6
7.3.17 TCRT - CaLL SpeciaL TerminaL Driver

Routines ••••••••••••.•••••.•••. 7-6
7.~.17.1 Standard Functions •••••••••• 7-7

7.3.17.1.1 Cursor Addressinq 7-7
7.~.17.1.2 Other Functions. 7-7

7.3.18 Message CalLs •......•..............•.. 7-8

CONVERSION MONITOR CALLS

8.1 NUMERIC CONVERSION CALLS ••••••••••••••••••••• ~-1
8.1.1 CalL;n~ Forwat •••••..••••.•.•••••..••• 8-1

8.1.1.1 Size Ryte •••••.•.•.•••••.•••• 8-1
R.1.1.? Flags ••..•.•••••••.•••••.•.•. 8-2

AMOS MONITOR CALLS MANUAL Paqe ix

CHAPTER 9

CHAPTER 10

APPENDIX A

APPENDIX B

8.2 RAD50 CONVERSION MONITOR CALLS ••••••••••••••• 8-2
8.2.1 RA050 Packinq ALgorithm ••••••••••••••• R-3
8.2.2 Packing and Unpacking CaLls ••••••••••• R-3

8.2.2.1 PACK - Pack Three Ascn
Characters into RAD50 • R-3

8.2.?2 UNPACK - Unpack Three RAD50
ChAracters into ASCII 8-4

8.3 PRINTING CONVERSION CALLS •••••••••••••••••••• R-4
8.3.1 PFILE - Output a Filespec From a DDB •• 8-4
8.3.2 P~NAM - Output 8 FiLen?me ••••••••••••• 8-4
8.3.~ PRPPN - Output a PPN •••••••••••••••••• 8-4

8.4 ALPHABETIC CONVERSION--LCS AND UCS ••••••••••• 8-4

INPUT LINE PROCESSING CALLS

9.1 ALF - TFST A CHARACTER FOR ALPHABETIC •••••••• 9-1
9.2 NUM - TEST A CHARACTER FOR NUMERIC ••••••••••• 9-2
9.3 TPM - TEST A CHPRACTER FOR TEPMINATOR •••••••• 9-2
9.4 LIN - TEST A CHARACTER FOR LINE TERMlNATOR ••• 9-?
9.5 BYP - BYPASS BLANKS •••••••••••••••••••••••••• 9-2
9.6 GTDEC - INPUT A DECTMAL NUMBER ••••••••••••••• 9-2
9.7 GTOCT - INPUT AN OCTAL NUMBER •••••••••••••••• 9-2
9.8 GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER •••• 9-3
9.9 FILNAM - INPUT A FILENAME •••••••••••••••••••• 9-3

MISCELLANEOUS MONITOR CALLS

10.1 EXIT - RETURN TO AMOS COMMAND LEVEL ••••••••• 10-1
10.2 CTRLC - BRANCH ON CONTROL-C ••••••••••••••••• 10-1
10.3 JLOCK, JUNLOK - PREVENT CONTEXT SWITCHING ••• 10-2
10.4 RQST - REQUEST CONTROL OF A SEMAPHORE ••••••• 10-2
10.5 RLSE - RELEASE CONTROL OF A SEMAPHORE ••••••• 10-7
10.6 PCALL - INVOKE PROGRAM AS SUBROUTINE •••••••• 10-3
10.7 AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE ••• 10-3

DISK STRUCTURE FORMAT

A .• 1
A.2

PHYSICAL RECORD FORMAT
DISK PECORD TYPES ••••••••••••••••••••••••••••
A.2.1 The Disk ID Record ••••••••••••••••••••
A.2.2 The Bitmap ••••••••••••••••••••••••••••
A.2.3 The Master FiLe Directory •••••••••••••
A.2.4 Th~ User FiLe Directory •••••••••••••••
A.2.5 SequentiaL FiLe Data Records ••••••••••
A.2.6 Contiguous FiLe Data Records ••••••••••

A.3 FILE STRUCTURE •••••••••••••••••••••••••••••••
A.4 ~FD ITEM FORMAT ••••••••••••••••••••••••••••••
A.S UFD ITEM FORMAT ••••••••••••••••••••••••••••••

SYSTEM COMMUNICATION AREA

A-1
A-2
A-2
A-2
A-3
11-3
A-3
A-3
A-3
A-S
A-S

B.1 SYSTEM - SYSTEM ATTRIBUTES WORD •••••••••••••• B-1
B.2 DEVTBL - PDDRESS OF THE DEVICE TABLE ••••••••• B-1

AMOS MONITOR CALLS MANUAL Page x

APPENDIX C

INDEX

9.3 DDBCHN - ACTIVE DDB CHAIN •••••••••••••••••••• B-1
B.4 MEMBAS & MEMEND - USER MEMORY POINTERS ••••••• B-2
B.5 SYSBAS - BASE OF SYSTEM MEMORy ••••••••••••••• B-2
8.6 JOBTBL - ADDRESS OF THE JOB TABLE •••••••••••• B-2
B.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB •••••• B-2
B.~ JOBESZ - JOB TA.BLE ENTRY SIZE •••••••••••••••• B-2
B.9 TIME - THE TI~E OF DAy ••••••••••••••••••••••• B-3
B.10 DATE - THE SYSTEM DATE ••••••••••••••••••••••• B-3
8.11 HLDTIM - THE HEAD LOAD TIMFR ••••••••••••••••• B-3
A.12 CLKFRQ - LINE CLOCK FREQUENCy •••••••••••••••• R-3
B.13 SPXSAV - STACK POINTER SAVE LOCATION ••••••••• 8-4
8.14 SPXINT - INTERNAL STACK •••••••••••••••••••••• B-4
B.15 LPTQUE - LINE PRINTER SPOOLER QUEUE •••••••••• 8-4
8.16 TRMDFC - BASE OF THE TERMINAL DEFINITION

TABLE ••••••••••••••••••••••••••••••• 8-4
B.17 TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER ••• 8-4
8.18 TRMTDC - ADDRESS OF FJRST TERMINAL DRIVER •••• B-4
B .19 TRMSCt-1 - THE NON-INTERRUPT TERMINAL QUEUE •••• 8-4
8.20 CLKQUE - THE CLOCK QUEUE ••••••••••••••••••••• 8-5
B.?1 SCNQUE - THE IDLE SCAN QUEUE ••••••••••••••.••• B-5
8.22 RUNQUE - THE JOB SCHEDULING QUEUE •••••••••••• 8-5
8.23 DRVTRK - THE DRIVE/TRACK TABLE ••••••••••••••• 8-5
8.24 ME~DEF & MEMBNK - MEMORY MANAGEMENT CONTROL •• 8-5
8.25 ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER ••••••• B-S
B.26 QFREE - QUEUE SYSTEM CONTROL ••••••••••••••••• 8-6

ALPHABETIC LISTING OF AMOS MONITOR CALLS

CHAPTER 1

COMMUNICATING WITH THE AM-100 MONITOR

The AM-10C monitor contains over 70 routines avaiLabLe for use by assembly
language programs running in user or monitor memory. These routines are
called hy the supervisor calls SVCA and SVCB, which have been coded into
macro form to make them easy to incorporate into user programs. The m~cros
are included as a part of the system library file SYS.MAC in account [7,7]
of the system disk. These calls have been grouped according to the function
th~y perform and are described in this chapter and the following chapters.

1.1 MONITOR CALL CALLING FORMAT

The genp.ral format for all monitor calls is:

{label:} opcode {arguments} {;comments}

As the format shows, thp only required item in aLL calLs is the opcode
itself, which is the name of the monitor caLL. A LabeL may be used if
desired, in which case it is assigned the address of thp. SVCA or SVCB
instructions which start all monitor call sequences. The total number of
words generated by any monitor caLL depends upon the call itseLf. Some
caLLs generate up to four words of code to perform the function. Those
caLLs which incorporate an ASCII message (such as the TYPE caLL) generate a
string of bytes varying in Length depending en the message invoLved. As in
machine instructions, you m~y ALso pLace comments at the end of the Line;
each line of comments is identified by a preceding semi-coLon.

1.1.1 Arguments

Some caLLs require one or more arguments to specify parameters for the
execution of the monitor caLL function. These arguments most normaLLy are
source and/or destination address items for the data being manipulated by
the monitor calL. So~e calLs alLow you to specify the location of data
parameters, whiLe other calLs operate with predefined registers that you
must set up beforehand. The following sections define each call and detaiL

COMMUNICATING WITH THE AM-100 MONITOR Page 1-2

the required arguments. NormaLLy you define the arguments as expression
vaLues, standard addresses, or ASCII strings. An expression vaLue may be
any vaLid source expression which, after fuLL evaLuation, results in a value
within the range of the argument definition. ASCII strings are just that; a
string of characters typicaLLy used as a message to be dispLayed. Standard
addresses are so important and compLex that we devote the next entire
section <1.1.2) to expLaining them.

1.1.2 Standard Address Arguments

NOTE

The foLLowing section is one of the most
important, and most frequentLy misunder
stood, sections of this manu~L. The concept
of standard arguments is fundamentaL to
understanding the monitor caLL caLLing
sequences.

Standard addresses form the heart of many of the more compLex monitor calLs;
you shouLd therefore thoroughLy understand them in order to gain maximum
fLexibiLity from the system. A standard address argument is coded exactly
the same as a standard source or destination operand for a machine
instruction such as ADD or MOV. Some restrictions shouLd be noted, however,
due to the method use~ in processing the standard address. Standard
addresses are onLy used with those monitor caLLs that are coded as SVCB
instructions. The SVCB pushes aLL user registers onto the stack, and it is
from these stored vaLues on the stack that the monitor caLL processor gains
access to the address caLcuLations using those registers. St~ndard
addresses may take the form of any of the vaLid WD16 addressing modes;
however, aLL autoincrement and autodecrement processing is done on a word
basis, even though the monitor caLL may be requesting onLy one byte of data.
In addition, the vaLue used for SP register references is a dummy vaLue
which is not reLoaded into SP when the monitor caLL exits, so the
autoincrementing and autodecrementing modes wiLL be ignored if used with the
stack pointer register.

The monitor caLL processing software within the monitor actuaLLy dupLicates
the hardware, caLcuLating the target address from the stored register vaLue
on the stack and the data from the extra word, if the address mode uses one.
This target address then becomes the address of the data to be manipuLated
by the specific monitor caLL routine itseLf. This data may be onLy one
byte, or it may be severaL words or more. The target address caLcuLated by
the processinq of the standard address argum~nt aLways points to the first
byte of the data if more than one byte is required by the monitor caLL. A
speciaL case occurs when the st~ndard address argument specifies the direct
register address mode. In the WD16 hardware instructions, there is never
more than one fuLL word of data invoLved for the standard source and
destination address modes, so direct reqister works on either the Low byte
or the fuLL word in the target register. In the processing of monitor cnLl
standard addresses, however, this is not aLwAYs the case since, as we

COMMUNICATING WITH THE A~-100 MONITOR Page 1-3

pointed out, some caLLs require scvpraL words of data to be manipuLated.
When direct register mode is used, the target address is actuaLLy the
address of the stored registFr on the stack, which was ~ rlirect resuLt of
the SVCB hardware instruction orocessing. rf more tha~ one word is used by
the c~LL, it mereLy sequences right on through the stored words on the
stack. In simpLe terms this means that if a monitor caLL wants three words
of data for an argument and you specify the register R? as the standard
address argument, the three words that are used are actuaLLy those in R2, R3
and R4, in sequence. This is often vpry usefuL when writinq re-entrant
code.

CAUTION: If you specify a register for a caLL that wents more words than you
have registers (most 1/0 caLLs want a 20-word DDS argument), the monitor
caLL wiLL waLk right on through your stack and most LikeLy crash the entire
system.

One of the more common errors is forgetting that a standard argument needs a
pound-sign (#) in front of a literaL argument. For exampLe, if you want the
program to sLeep for 20 cLock ticks, the code reads:

SLEEP #20.

Note that without the pound-sign, the proqram wouLd sLeep for the number of
ticks contained in program-reLative Location 20.

It is very important that you understand the concepts outLined above. Think
of the standard address arguments as source or destination addresses, as in
the machine instructions. When you use them incorrectLy, you wiLL
definiteLy find out about it quickLy, since the usuaL resuLt is a system
crash.

CHAPTER 2

JOB SCHEDULING AND CONTROL SYSTEM

The AMOS timesharing monitor allocat~s iobs and schedules CPU time and
resource~ for their operation. In order to properly write assembly language
programs which make use of ~0m~ of the more complex features of the system,
you must havp a basic understanding of how jobs are scheduled and
controlled. The theory behind job-handling is too ~nco~passing to cover in
one section of this manual, but we can explain the fundamentals of job
control by user programs.

Each job running in th~ system has two dpdicated components which are not
shared by any other job in the system: a monitor job control block and a
user memory partition. In the monitor memory ~rea itself, a job control
table contains one area for each job that has been allocated to the system.
One job is allocated for each J08 command in tnp system initialization
command file, which gives the job nam~ and the terminal to which it is
connected. The area allocated for pach job in the job control table
contains specific information about that job. This area is called the job
control block an~ will be referred to from now on as the JCA.

2.1 THE JOB CONTROL BLOCK (JCB)

The format of the JCB is defined in the system library file SYS.MAC as a
series of equate statements. Each equat~ statement has the name JOBxxx,
where xxx is a 3-character code for the specific item of the JCB being
defined. The value of this symbol is actually the offset in bytes from the
base of the JCB to the item itself. You may, rluring the course of your
program, wish to read the current data in your own JCB or in some instances
modify it. References to the JCB items should be made in one of two ways:

1. Use the system monitor calls JOBGET, JOBSET, and JOBIDX; which is
the preferred method.

2. Locate the JCB for your job by movin~ @#JOBCUR into a register and
then referencing all JCB items via JOBxxx(Rx).

JOB SCHEDULING AND CONTROL SYSTEM Page 2-2

Three words in the system communication area define the entire job controL
system during time-sharing operation. These three words are not part of the
JCB areas but rather are non-sharabLe parameters set up during system
initiaLization and not part of anyone job. We point this out because the
names of these three words are JOBTBL, JOBCUR and JOBESZ; which appear to be
part of a user JCB but reaLLy are not. JOBTBL contains the base of the JCB
tabLe where aLL JCB's are stacked sequentiaLLy. This address is set up at
system initiaLization time and is never changed. JOBCUR aLways contains the
address of the JCB which has current controL of the CPU and is updated to
point to the new JCB each time the job scheduLer switches to a different
job. Therefore, @#JOBCUR aLways pnints to your JCB if you reference it,
because the reference is onLy executed whiLe you have current controL of the
CPU. JOBESZ contains the size of the JCB in bytes and is used by the system
and by user programs for scanning through the JCB tabLe. Since the size of
the JCB may expand as new features are added to the system, JCB tabLe scans
must be made by setting an index to the base'of the tabLe (MOV @#JOBCUR,Rx)
and then adding the size to the innpx to get to the next entry (ADD
@#JOBESZ,Rx). In a JCB tabLe scan, the first worn of each JCB is guaranteed
to be non-zero and the tabLe is terminated by a nuLL (zero) word. Again,
these three words are a part of the moster system communication area and not
in the job table itseLf.

2.1.1 ExampLe - Scanning The Job ControL Area

The foLLowing is a brief exampLe of how tc scan the JCB tabLe and process
each JCB entry (such as for a system status report):

MOV @#JOBTBL,RO ;set JCB tabLe index RO to tabLe base
;Loop here to process each job tabLe entry (JCB)
LOOP: ;process JCB entry which is indexed by RO

;references to JCB items are via JOBxxx(RO)

ADD @#JOBESZ,RO
TST @RO
BNE LOOP

;At this point we have finished

;advance RO to next JCB entry
;is this end of JCB tabLe? (nuLL word)
; nope - go process vaLid JCB entry
the joh tabLe scan

JOB SCHEDULING AND CONTROL SYSTEM Page 2-3

2.2 ACCESSING YOUR JCB

You use three monitor c"lls to gai~ access to your own JCB when necessary.
Two of the calls are used to transfer a single word of data to and from a
specific word i~ the JCB; the other sets an index to a specific spot in the
JCB area so that multiple words may be transferred, or so that faster access
may be obtained when needed.

JOBGET
JOBSET
JOBIDX

tcg,item
tag,item
tag,item

;Transfers one word from JCB item to tag
;Transfers one word from tag to JCB item
;Sets absolute address of JCB item into tag

Since the locations may cnange, always us~ these calls as shown above.

2.2.1 CalLing Sequence

All calls share the same basic format, where tag is a standard ?rgument used
for the transfer of one word of data in the JOBGET and JOSSET calls or to
receive the index address i~ the JOBIDX call. The item argument is one of
the JCB item tags (JOBSTS, JOBNAM, etc.), which identifies the ite~ to be
used i~ the transfer or to have the index set to. These items are equatAd
to their relative offset value in SYS.MAC. Section 2.4 below expLains how
to use these items and points out their importance to the user.

2.3 JOB SCHEDULING CALLS

In addition to the above calLs, three others are used by various routines
within the system monitor for controlling the job scheduling processes.
These calls are JW~IT, JWAITC, and JRUN. JWAIT sets any job into the wait
state. JWAITC sets your job into the wait state. JRUN then reactivates a
job to the run state:--tf the J.NXT flag is specified, the job is placed at
the beginning of the run queue; when J.NXT is not specified along with other
JRUN flags, the job is placed at the end of the run queue. JWAIT and JRUN
require that the job being controlled be indexed by RO (which must point to
the base of the JCB for that job), and that the argument specify one of the
status control bits (in JOBSTS) to be used as the control flag. JWAITC
assumes the current user.

2.3.1 SLEEP - PUT JOB TO SLEEP

SLEEP is a simple call that puts the user job to sleep for' the number of
line clock ticks you specify in the argument. After the specified amount of
time has elapsed, the job is automatically awakened and execution continues
with the instruction following the SLEEP call. The Z-flag is set if the job
slept for the specified number of clock ticks. The Z-flag is reset if the
job woke up prematurely because another job used the WAKE call.

JOB SCHEDULING AND CONTROL SYSTEM Paqe 2-4

CAUTION: A sLeep caLL with an argument of zero cLock ticks puts the job to
sLeep for about 18 minutes (65536 clock ticks).

The normaL AM-100 system runs with a cLock frequ~ncy of 60 Hz; each cLock
tick, therefore, has a value of 16.7 miLLiseconds. ALso, the fir~t clock
tick may occur any time within the first 16.7 miLLiseconds (not necessariLy
a fuLL cLock tick).

Rememher that SLEEP takes a standard argump.nt; therefore, to cause the job
to sLeep for one minute, you wouLd execute:

SLEEP #3600

not

SLEEP 3600

Leaving off the pound sign (#) is a freqent coding error.

2.3.2 WAKE - WAKE UP JOB

This caLL wakes a specified job. RO must point to the base of the job you
want to wake out of the sLeep state. The Z-fLag is set if the caLL is
successfuL. If the specified job was aLready awake, the Z-fLag is reset.

2.4 JOB CONTROL BLOCK FOR~AT

The foLLowing is a List of the entries contained in your JCB. Each of these
entries may be accessed via JOBGET, JOBSET, or JOBIDX by using the tag
defined in each entry.

2.4.1 JOBSTS - The Job Status Word

The first word in each JCB is the job status flag word. Each bit in this
word indicates a particuLar state in which the job may reside. Some LegaL
states are defined by more than one bit being on at a time. The system and
~omp. of the system programs set and reset these bits as the current state of
the job changes, but you shouLd not aLter this word without extreme caution.
FoLLowing is a brief List of the bits and the mneumonics assigned to them,
along with a basic description of the function of the bit when it is set.

J. ALC=1 ;Job entry is aL Located (guarantees JOBSTS non-zero)
J. TIW=2 ;Job is in TerminaL Input Wait state
J.TOW=4 ;Job is in TerminaL Output Wait state
J.SLP=10 ;Job is in SLeep state
J.IOW=20 ;Job is in I/O Wait state
J.EX~=40 ;Job is in ExternaL Event ~'ait state

JOB SCHEDULING AND CONTROL SYSTEM Page 2-5

J.SMW=100
J.CCC=200
J.RUN=400
J.MON=1000
J.LOD=4000
J.SUS=10000
J.LOK=20000
J.NXT=100000

;Job is waiting for semaphore
;A controL-C abort is waiting to be processed
;Job is running
;Job is in monitor command mode (no program active)
;Program is being Loaded for execution
;Job is in Suspend state
;Joh has CPU Locked (by user program command)
;Is aLways 0 in JOBSTS

If any of the foLLowing fLa~s are on, the iob wiLL not be scheduLed for CPU
run time untiL the fLag has been cLeared: J.TIW, J.TOW, J.SLP, J.IOW, J.EXW,
or J.SUS.

?4.2 JOBSPR - The Stack Pointer Reset Address

One word, JOBSTR, is used to store the stack pointer reset address which is
caLcuLated when the system is initiaLized. This address is then used to
reset the stack pointer each time the job exits back to monitor command
mode. The user may aLLocate a Larger stack area within his own partition by
reloading this address if desired.

2.4.3 JOBNAM - The Job Name

Two words, JOBNAM, contain the 6-character job name packed RAD50. This name
is set up by the JOBS command in th@ system initialization file. If a user
program alters this word, it effectively alters the name of the job.

2.4.4 JOBBAS - The ~emory Base Address

JOBBAS, one word, contains the base address of the user memory partition if
one has been allocated for this job. This address is aLtered onLy by the
MEMORY program which allocates and deal locates user memory partitions. We
advise against altering this address unless you thoroughly understand the
memory allocation process.

2.4.5 JOBSIZ - The Memory Partition Size

One word, JOBSIZ, contains the size of the user memory partition in bytes if
one has been allocated for this job. This size word together with the above
JOBBAS address word defin~ the current user memory p~rtition. JOBSIZ is
aLtered onLy by the MEMORY program and the monitor command processor.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-6

2.4.6 JOBUSR - The Current PPN

JOBUSR, one word, contains the current user PPN (account number) if the user
is Loggp.d in. Zero indicates that no user is currentLy Logged into this
job. JOBUSR is modified by the LOG and LOGOFF programs and is tested by
various protection schemes in the system to aLLow user access to fiLes, etc.

2.4.7 JOBPRV - The PriviLege Word

JOBPRV, one word, is uspd to store the priviLeges associated with the job.
This word is not currentLy used but is alLocated for future impLementations
of the security system. Further documentation wiLL be providpd when the
system is compLeted.

2.4.8 JOBPRG - The Current Program Namp.

Two words, JOBPRG, contain the o-character program name which is currently
running or was the Last job run if in monitor command mode. JOBPRG is
Loaded with the program name (p~cked RADSO) by the command processor when
the program is Loaded or lorated for execution. CurrentLy, the onLy
significance of this program name is in the dispLays created by the SYSTAT
program (user terminaL status dispLay) and the DYSTAT program (video
monitor).

2.4.9 JOBCMZ - The Commond FiLe Size

JOBCMZ is one word containing the size of the current command file area in
the user memory partition if a command fiLe is being processed. If this
word is zero, no command fiLe is currentLy in effect. This word is set to
the initiaL size of a command file when that fiLe is loaded into the top of
the user partition and is decre~sed as each line is extracted from the area
and sent to the monitor command processor. When it gets to zero, the
command fiLe is finished and the system returns to normaL command mode input
from the user terminaL. The user shouLd not aLter this word.

2.4.10 JOBCMS - The Comman~ FiLe Status

JOBCMS is one word containing flags used by the command file processor when
a command fiLe is being processed. These fLags shouLd never be aLtered by
the user, so they are not detaiLed here. JOBCMS works in conjunction with
JOBCMZ to affect the command fiLe processing scheme.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-7

2.4.11 JOBERC - The Error Control Address

One word, JOBERC, controls the processing of WD16 hardware bus errors as
described in the WD16 Programmpr's Reference Manual. If JOBERC is zero a
bus error causes a message to be printed on the user terminal, and th~ job
is aborted. If JOBERC is non-zero a jump is made to the address specified
in JOBERC, which should contain a valid routine for shutting down the
program. Note that the bus error is fatal for this user only and does not
norm~lly kill the whole time-sharing system.

2.4.12 JOBTYP - The Job Type

JOBTYP, one word, specifies the type of job which is assigned to this
jobstream. The following fLags are currently implemented:

J.USR=1
J.NUL=2
J.NEW=4
J.LPT=10
J.HEX=20
J.DER=40
J.VER=100
J.GRD=400

iJob is a user partition
iJob is currently running the null subroutine
;Job is processinQ a new memory allocation
;Job is running the line-printer spooler (LPTSPL)
;Binnry inputs ~nd outputs are in hex (not octal)
iPrint disk error rptry messages
;Activate auto-verify mode for disk writes
;Terminal is guarded agcinst SEND commands

2.4.13 JOBBPT - The Breakpoint Address

JOBBPT is one word specifying the address to jump to if a breakpoint is
encountered during the execution of a user program. JOBBPT is used by the
DDT debug program for breakpoint handling and not normally used by user
programs.

2.4.14 JOBBNK - The Memory Bank Pointer

JOBBNK is one word used by the memory management system to define the bank
in which the job's current memory partition resides. It is actuaLLy a
pointer to the control item within the memory mapping tabLe which is used
for turninq the bank on and off when the job is aLlocated CPU time. This
word must not be modified by the user.

2.4.15 JOBDEV - The DefauLt Device

JOBDEV, one word, contains the RAD50 device code for the default device to
be used if the file specification being processed by the FSPEC caLL does not
explicitly specify a rlevice. NormaLLy this defauLt device is DSK.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-8

2.4.16 JOBDRV - The DefauLt Drive

One word, JOBDRV, contains the drive number in binary for the default drive
number to be used if the fiLe specification being processed by the FSPEC
call does not expLicitLy specify a drive number. Only used if the device
code matches the code in JOBDEV or if the device cod~ is left to default
aLso. JOBDEV and JOBDRV normaLly contain the d~vice and drive number set by
the LOG program when a usp.r Logs in. They specify the disk device and drive
which you usuaLLy use for processing.

2.4.17 JOBTRM - The TerminaL RLock Pointer

JOBTRM is one word containing a pointer to the t~rminaL definition bLock for
the terminal which is currentLy attached to this job. If no terminaL is
currently att~ched, thig word contains a zero. The first word in the
terminaL definition bLock is the terminaL status word, which is avaiLabLe to
you for modification to set various terminaL parameters such as echo
controL, image mode and Lower-case processing. The oLd monitor calL TIDX
wouLd deLiver the address of this status word back to you in register RO.
The TJDX call is no longer supported and must be replaced by the more
general call:

JOBGET RO,JOBTRM ;Get status word index

As with alL of the JOBxxx calls, the destination may be any vaLid address
and not just RO as in the exampLe above. The above example wiLL repLace the
TIDX call exactLy in performance, since TIDX used RO as its destination.

For further information on the format of the terminaL definition block and
its use, refer to the source Listing of the terminaL service routine
(TRMSER) which is made available to users on a special source diskette, as
weLL as on the standard system disk pack. The terminal definition block is
defined at the beginnin~ of this routine.

2.4.18 JOBRBK - The Run Control BLock

JOBRBK, a 14-word area, is the run control bLock for the jobstream. It is
uged for the Loading of programs and overlays during job execution and is
set up by the user program with the parameters needed to fetch the next
program or overLay segment prior to the execution of a FETCH caLL. Refer to
the description of the FETCH monitor caLL in section 4.1 for more details on
the use of this item.

JOB SCHEDULING AND CONTROL SYSTE~ Page 2-9

2.4.19 JOBFPE - The Floating-Point Trap Address

JOBFPE, one word, contains the address to jump to if a floating point error,
such as a divide by zero, is ex~cuted. A user proqr~m which executes
floating point instructions should enter its error trap address into JOBFPE
and not into the vector at memory location 76, since this would destroy the
sharable resource of that vector.

2.4.20 JOBRNQ - The Scheduling Area

JOBRNQ, a 7-word area, maintains the par~meters for job scheduling and
context switching of this job. The first four words are dynamically
changing links used durin~ the job scheduling process to place the job into
the active run queue for future processing. Any altering of these four link
words should be done with caution.

The fifth and sixth words are used to determine the job's run priority. The
fifth word (at JOBRNQ+10) is the time counter which is decremented once for
each clock interrupt whenever the job is running. When this count ~oes to
zero, the job is put into the wait state and another job is activated. The
sixth word (at JOBRNQ+12) is the actual priority of the ;ob (set up by the
JOBPRJ command) and is used to initialize the above time counter each time
the job is given control of the CPU for running. These two words replace
the old system word called JOBPRI in the JCB.

The seventh word is used for stora~e of the current st~ck pointer value when
the job is not in the nctive run state. The scheduLer restores the stack
pointer from this word each time the job is reactivated.

2.4.21 JOBDYS - The DYSTAT Address

JOBDYS, one word, contains the address to the byte in the VDM screen memory
area for the job execution arrow. It is set by the DYSTAT program and
referenced by the monitor job scheduLer. The user shouLd not alter this
address.

2.4.22 JOBSTK - The Job's Stack Area

JOBSTK is a 100-word area that acts as the stack for this job. SP is set to
the top of this area when a new program is initiated. You may reset your
own stack pointer by movin~ the acdress of a Lnrger area within your own
partition, if the program needs more stack area. Ae sure to allow at least
20 extra words or so for possible real-time interrupt handLing which needs a
valid stack area for register saves. The job scheduler ~Lso s~ves all user
registers and processor status on the user stack during job context
switching.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-10

The label "JOBSTK" is not defined explicitly in SYS.MA,C, but the area exists
as the last 100 words in the JCB. The area has not been labeled because the
JCB may be increased in size as the need arises, and the JOBSTK area should
not be referenced by a label which will change value in future releases.

CHAPTER 3

MEMORY CONTROL SYSTEM CALLS

The AM-100 system contains a fairly sophisticated memory control system,
even though there is no memory protection or mapping ~errlware associated
with it. tn order to make maximum use of the memory resources av~ilable and
minimize system crashes due to memory violations, the assembly language
programmer should understand how the monitor aLlocates mpmory and the rules
under which memory should be accessed. This section describes the memory
allocation scheme and the monitor calls that assist you in using memory in
the proper way.

The AM-100 processor has available up to 64K bytes (32K words); the top
25A-byte portion is unavailablp because it is mapped to the 1/0 ports. The
AMOS monitor resides in low mpmory beginning at location zero and extending
upward as far as the monitor requires (typically around 14K bytes). The
remaining memory above the monitor up to the end of the total amount of
memory in your system is available for assignment as user memory partitions
for each of the jobs. All of the user memory may be aLLocated to one job,
or it may be spLit up into severaL partitions of varying sizes with one
partition allocated to each job. The amount of memory a user program has
avaiLabLe is therefore defined as t~e single contiguous memory partition
which has been assigned to his job by the operator MEMORY command. This
memory partition block is then allocated into smaller defined blocks called
"modules," which are uSf!d by the system and the user to contain programs and
nata areas. Monitor calls exist which allow the user program to locate the
absolute boundaries of its own memory partition and also to allocate,
change, and delete memory segments in the form of defined moduLes. These
modules can be named just like files (filename.extension), so they may be
located by that name. Any program loaded for execution wiLL be in the form
of a module. During execution, some programs create other modules for
device buffers, data tabLes, etc.

MEMORY CONTROL SYSTEM CAllS Paqe ~-2

3.1 MEMORY PARTITION FORMAT

The memory partition assigned to a job may be Located anywhere in memory
depending on the memory that was avaiLabLe when the job assigned it using
the MEMORY operator command program. The user program may not count on any
specific Location for this partition. Within the partition, memory moduLes
are aLLocated upward beginning at the base of the definpd partition ~nd

buiLding moduLes on top of each other as long as space permits. Modules may
not be built that will extend past the top houndary of the user partition.
As moduLes are deleted from memory, all modules above them are automatically
shifted downward to fiLL up the space that the deleted module left. Also,
when any moduLe is changed in size, the modules above it are shifted in
position accordingly. This method in~ures that all available memory is
always at the top of your partition in one contiguous hlock. This method of
grabbing the first portion of free memory to load a program into is the main
reason that aLL programs must be written in totaLLy reLocatabLe code.

Figure 3-1 shows a typicaL memory Layout for three users operating in a 64K
system. The free memory at the 56K boundary couLd be used by a fourth job
or by a current job that needs to expand.

Three monitor caLLs return information about your memory partition as it
happens to be aLLocated. These three calls aLL take a single standard
argument into which is deLivered the absoLute address of the base, end, or
free base of the user memory partition. The three caLLs and the addresses
that they return are Listed beLow:

USRBAS
US REND
USRFRE

arg - absoLute base of user memory partition (Last word)
arg - absoLute end of user mp.mory partition (Last word)
arg - current base of remaining free memory (last moduLe+2)

Since modules must always occupy an even number of bytes, the above calls
always return an even address. If no moduLes are allocated in the current
partition, the USRFRE address wilL equal the USRBAS address. Otherwise, the
USRFRE address wiLL be the word following the last currently alLocated
moduLe in the memory partition. The remaining free mpmory that the user. may
use may be caLcuLated by subtracting the USRFRE address from the USREND
address.

Figure 3-2 shows a typical user job partition during the execution of a
program which was Loaded automaticaLLy by the operating system. The program
itseLf was the first module to be aLLocated in the user partition and then
was executed after bein~ Loaded. It remains in memory until it completes
its task and exits to the monitor, at which time it is deleted by the
operating system monitor. During execution, the program alLocates a 1K data
table moduLe which may be used for storage of symboLs or some similar
function. Two I/O fiLes are then opened on disk which causes the operating
system fiLe service routine to allocate the two disk buffer moduLes. The
remaining memory in the partition has not yet been aLlocated in our exampLe.

MEMORY CONTROL SYSTEM CALLS

64K

56K

4BK

32K

16K

- - -

"

Free Memory

User 3

User 2

User 1

Resident Programs

- - - - - - - - - - -

Resident Monitor

Memory Map for a Typical 64K System [3 usersJ

Fig 3-1

Page 3-3

Note: Memory sizel
are typical

Total resident moni
size is 16K, leaving •
for user partitions

MEfYlORY COiHROL SYSTEM CALLS

I
Top:

Command File [if used]

Free Memory Area

[Available to this job only]

Disk Buffer 512 bytes

Disk Buffer 512 bytes

Data Table 2K bytes

User Program [Running)

BKbytes

Bottom:

Page 3-4

.. USREND

-4E---USRFRE

These modules allocated by
GETMEM calls during the
execution of the program

User program module loaded
by operating system when the
program name was entered
as an operator command

'---USRBAS

Memory Map for a Typical User.Job Partition

Fig 3-2

MEMORY CONTROL SYSTEM CALLS Page 3-5

Note that the US REND caLL does not actuaLly return the absolute end of the
partition hut rather the end of the available free memory at the time of the
caLL. If a command fiLe is in progress, it occupies the upper part of the
partition which we do not wish to alter during the execution of a program.
In fact, the program should not have to take into consid~ration whether or
not it was called by direct command or from a command file. Use of the
US REND caLL insures that the user program may use aLL of free memory without
having to compensate for the remaining part of any command file moduLe.

Although the standard use of memory by the operating system is through the
use of the m~mory management system calls (to be described next), you may
find it easier to use free memory without regard to moduLe boundaries,
especialLy for use in variable lenqth tables or hashing techniques. For
this reason, the free memory space is aLways defined as the area between the
addresses returned by the USRFRE and US REND calls. Note that the
initiaLization of fiLes normaLly re5ults in the alLocation of a buffer
module; the operating system aLLocates this buffer at the current setting of
the USRFRE address, then updntes that USRFRE address. Therefore, you must
be sure that alL 1/0 buffers and any work modules are aLLocated before
freely usin~ the memory above the USRFRE address. The INIT and FETCH calls
both cause the indirect alLocation of a memory module in addition to the
direct aLLocation or aLteration of moduLes by the GETMEM, CHGMEM and DELMEM
caLLs.

3.2 MEMORY MODULE FORMAT

Memory moduLes are the basic unit of formal rlata structure within the user
memory partition. They are always allocated on word boundaries and must
contain an even number of bytes to maintain this format. The monitor calls
automaticalLy pad an odd-sized module with a nulL byte to even it up. All
moduLes contain five housekeepinq words folLowed by any number of data words
from zero to the maximum size Left in the user memory partition. The five
housekeeping words are aLways aLlocated, so a singLe-word moduLe realLy
t~kes up six words of memory.

The moduLe format is as folLows:

~Jord 1 - totaL size of moduLe in bytes including the housekeeping words
Word 2 - module fLag word
Word 3 - moduLe fiLename packed RAD50
Word 4 - moduLe fiLename packed RAD50
Word 5 - moduLe extension packed RAD50
Words 6 thru n - moduLe data area

Figure 3-3 gives a pictorial view of the above standard moduLe format. The
data area is usuaLLy the onLy area with which the user is concerned and so
aLL references are made from the base of this area. The SRCH and FETCH
caLLs <described in section 4.1) return this absoLute address when Locating
or Loading the requested moduLe, instead of the address of the base of the
housekeeping words. References to the housekeeping words shouLd therefore
be made via negative offsets reLative to the data base address.

MEMORY CONTROL SYSTEM CALLS Page 3-6

When scanning for a specific module or locating the end of the current
module string, you may set your index using the USRBAS caLL, which returns
the address of the size word of the first aLLocated moduLe. You can then
merely check the housekeeping words for the correct moduLe name or other
determining parameters and, if the moduLe is to be bypassed, add the size
word to the index. This bumps the index to the next moduLe aLLocated. The
Last moduLe aLways has a zero word foLlowing it, and you must be carefuL not
to destroy this zero word if you are manipulating free memory directly
without aLLocating it using the memory caLLs.

The moduLe filename and extension folLow the same format as the fiLenames on
disk if the moduLe in memory is named. The name is optionaL and need be
used onLy if the moduLe is to be Located by name at a Later time.

ModuLes may be either temporary or rerm~nent rl~p~nding on the method used to
Load them into memory. A moduLe is made permanent by setting the fiLe bit
on in the housekeeping fLaq word when the moduLe is aLLocated. Temporary
moduLes are automaticaLLy deLet~d by the monitor when the progr~m finishes
and executes the EXIT caLL. Permanent moduLes are not automaticaLLy d~leted
but may be deleted by either the operator DELETE command or the monitor
DELMEM caLL. Forcing a zero into the size word of the moduLe is another way
of deLeting it, but this is not the recommended way since it aLso deLetes
aLL moduLes above it (the zero is the module area termination word).

3.3 MANIPULATING MEMORY MODULES

Three monitor caLLs are used to create, alter and deLete these memory
modules. ALL three caLLs take a singLe standard argument which must be the
address of a 2-word bLock caLLed a memory controL bLock (MCB). The first
word of this MCB contains the absoLute memory address of the data area in
the aLLocated moduLe (past the housekeeping words). The second word
contains the size of the data area in bytes (ten bytes Less than the totaL
moduLe size since the housekeeping words are not incLuded). The MCB
therefore is the user's bLock, which defines a contiguous area in memory by
its base address and size in bytes. You need not b~ concerned with the
housekeeping words unLess you need to access them directLy; such a necessity
shouLd be rare.

The foLLowing three calls are used to manipuLate memory modules:

GETMEM MCB
CHGMEM MCB
DELMEM MCB

- aLLocates a new memory moduLe at current USRFRE
- changes the size of the moduLe defined by MCB
- deLetes the memory module defined by MeB

The Z-fLag is reset if GETMEM and/or CHGMEM fail (i.e., there is insufficient
memory).

MEMORY CO~TROL SYSTEM CALLS Page 3-7

+n

I-

I-

+6
I-

+4
i-

+2

--
Base:

-2

-4

-6

-10

-12

User Program or Data

Module Extension [RAD50]

Module Name Word 2 [RAD50]

Module Name Word 1 [AAD50]

Module Flag Word

Module Size Word*

-
-

-

-

-

Actual data area size as
specified in GETMEM call

SACH, FETCH & GETMEI\
.---return this address

5 housekeeping words

*Module size equals c
area size plus 10 byt
[Swords]

Standard Memory Module Format

Fig 3-3

MEMORY CONTROL SYSTEM CALLS Page 3-8

3.3.1 Allocating a Memory Module

The following example shows the allocation of a 100-byte module

MCB:

MOV
GETMEM
BNE

WORD
WORD

NOMEM: EXIT

#100.,MCB+2
r~CB

NDMEM

o
o

3.3.2 Changing a Memory Modul~

;set module size as 100 (decimal) bytes
;allocate module (MCB gets its address)
;no memory available

;receives address of module data area
;size of module data area in bytes

You may increase the size of the same module by:

ADD
CHGMEM
BNE

#20.,Mca+2
MCa
NOMEM

;increase size word by 20 bytes
;change its size
;not enough memory available

The above code causes the monitor to adjust the module housekeeping size
word to refLect the new size. The address of the module does not change.
However, note that the U~RFRE adrlress advances by 20 bytes and that any
modules alLocated after the one at Mca are shifted up in memory; but their
corresponding arldresses in their Mea are not adjusted by the monitor. I/O
buffers aLlocated after the MCB moduLe wiLL therefore be erroneousLy
addressed after the chang~, so the CHGMEM call must be used with care.

3.3.3 DeLeting a Memory ModuLe

To delete the ahove module we use the code,

DELMEM Mca ;delete the module

3.3.4 Permanent and Temporary Modules

Recall that all temporary modules are automAtically deleted by the monitor
when the program exits. You may force the module to be permanently left in
memory by giving it a name and setting the fiLe bit (defined in SYS.MAC as
"FIL") in the flag \~ord. The foLLowing example illustrates the alLocation
of a 200-word module which is mad~ permanl?nt with thE" name "TABLE1.DAT":

MEMORY CONTROL SYSTEM CALLS

TBL1:

MOV #200.,TBL1+2
GETMEM TBL1
BNE NOMEM
MOV TBL1,RO
MOV #[DATJ,-(R8)
MOV #[LE1J,-(RO)
MOV #[TABJ,-(RO)
SIS #FIL,-(RO)

WORD
WORD

o
o

;set size as 200 bytes
;allocate the module
;no memory available
;set RO to index the data area base

Page 3-9

;set the moduLe name and extension (RADSO)
; into the housekeeping words
; in reverse order for efficient use of RO
;set permanent file bit on in fLag word

;receives address of module
;size of module in bytes

Permanent memory modules may be saved onto disk using the operator SAVE
command, or they may be deleted from memory when done by the operator DEL
command. Refer to the PMOS User's Guirle (DWM-00100-3S) for details on
these commands.

3.4 MEMORY MAPPING SYSTEM

The AMOS system is capable of supportinp memory in excess of 64K by a simple
bank switching technique which turns selected memory boards on and off under
control of the operating system. This section defines some of the technical
aspects of that system. It is assumed that you are already famiLiar with
the operational aspects of the memory m~n~qpmp.nt system from the standpoint
of setting up the SYSTEM.TNI file commands and operating procedures.

You must define for your own application the normal 64K memory as two
gener~l areas caLled sharable and switchable memory. Sharable memory always
starts at location zero and extends upward far enough to totalLy contain the
resident operating system and any system programs or sharable memory area
needed for the application. Switchable memory then may occupy the remainder
of the memory area up to the 64K address (octal 177376 inclusive).

There is only one sharabLe memory area that is aLways active. The
switchabLe area, however, may be occupied by multiple memory boards referred
to as "banks." Banks are defined to the operating system during system
startup with the MEMDEF statements. Each MEMDEF statement defines the
memory board (or boards) which are to be activated when that bank is
selected by the operating system. SeLection of the bank for activation is
done when one of thp user jobs which resides within that bank is granted CPU
time by the AMOS job scheduLing system. This action is automatic and
transparent to the user. OnLy one bank may be active at,a time, since aLL
banks effectively respond to the same memory addresses (the area defined as
switchabLe memory).

MEMORY CONTROL SYSTEM CALLS Paqe 3-10

3.4.1 InternaL TabLe Format

The memory bank switching system is controLLed by a tabLe which is buiLt by
the MEMDEF statements during system startup time. The tabLe is basicaLLy a
Linked List of muLti-word entries that resides within the monitor nrea. One
entry defines the sharabLe memory area, and there is one entry for each bank
defined by a MEMDEF statement. Two words that reside in the monitor system
communication area are used to control the memory management system. These
words are Lab Led "MEMDEF" and "MEMBNK"; MEMDEF stores the base addres'5 of
the tabLe just defined, and MEMBNK stores the memory bank which is currentLy
active. If memory management is not in use (no MEMDEF statements appeared
in the SYSTEM.INI file) both of these words contain a zero vaLue.

A system configured with an AM-700 or Memory Partition ControLLer (MPC) has
a different controLLing data structure than one using traditionaL bank
swapping. (For information on the MPC, refer to the "System Operator's
Information" section of the /l.MOS Software Update Documentation Packet.) The
data structure is a Linked List of queue eLements, each containing four
words. One element is aLLocated for the sharabLe memory area, one for each
job on the system, one for each pi~ce of switchabL~ system memory, and one
to indicate the end of physical me~ory. These eL~m~nts are created by JOBS,
BITMAP, and SYSTEM during the system initiaLization procedure. The queue is
pointed to by the word LabeLed "MEMDEF" residing in the system
communications area.

3.4.1.1 The MEMDEF Word - The MEMDEF word in the system communication area
contains the address of the first entry in the tabLe, which is aLways the
entry defining the sharabLe memory boundaries. The format for this entry
is:

Word 1 - Link to next entry
Word 2 - base address of sharabLe memory (0)
Word 3 - top address of sharabLe memory pLus 1

The remaining entries define the switchabLe memory banks in use and have the
format:

Word 1
Word 2
Word 3
Words

- Link to next entry (0 if this is Last entry)
- base arldress of thi'5 switchabLe bank

top address of this switchabLe bank pLus 1
4 through n - hardware controL codes for bank switching

The hardware control codes are one or more entries used to turn the memory
boards on and off during bank switching. There is one controL code for each
physicaL board which has been defined as part of this bank. Each controL
code is two words in length, with the first word containing the address of
the hardware port for the memory board and the second word containing the
switch-on and switch-off bytes (Low and hi~h bytes, respectiveLy) that are
sent to that port. Note that in the MEMDEF statements you can specify more
than one board per bank (even different types of boards) by separating the

MEMORY CONTROL SYSTEM CALLS Page 3-11

board definitions with sLashes. The finaL hardware code is foLLowed by a
singLe word of zero to indicate the end of the codes for this bank.

On a Memory Partition ControLLer (MPC) system (see reference in section
3.4.1 above), the word MEMDEF points to the data structure used by the
operating system to controL memory partitions. Each entry has the folLowing
format:

Word 1 - Link to the next entry
Word 2 - JCB pointer
Word 3 - Base address of partition
Word 4 - Limit address of partition

The eLement describing the sharabLe memory area has a 0 in word 2. An
eLement describing a switchabLe system memory moduLe has a -2 in word 2.
The Last eLem~nt has a 0 in word 1. The base and Limit addresses contained
in words 3 and 4 are magnitude 256; that is, the reaL memory address shifts
right eight bits. The sharabLe memory eLement has a 0 in word 3, and word 4
contains the end of the system area. The first jon on the systpm has 0 in
word 3, as the base address is an offset from the end of the sharabLe area.
The eLement for the sharabLe memory area is first in the queue, the eLements
for jobs are next, occurring in the sequpnce that the JOBS statement lists
them. Next are the eLements for switchabLe system memory, occurring in
reverse order of the BITMAP statements that generated them. The Last
element indicates the end of physicaL memory. For more detaiLs on exactLy
what base and Limit addresses are and how they work, refer to the hardware
documentation for the AM-700.

3.4.1.2 The JOBBNK Word - The JOBBNK word in each job's JCB contains the
address of the word 4 in the above definition for the bank in which the job
currentLy resides. This address is the base of the controL codes for the
hardware switching operation. The MEMBNK word in the system communication
area aLways contains the same address as the JOBBNK word for the job that is
currentLy running. This is used by the scheduLing and switching system to
turn off the current job and turn on the next job for running.

For a Memory Partition ControLLer (MPC) system (see reference in section
3.4.1 above), the JOBBNK word in a job's JCB points to word 3 in the
corresponding MEMDEF queue eLement. The MEMBNK word in the system
communications area aLways points to word 3 of the eLement corresponding to
the memory partition currentLy mapped in by the AM-700.

MEMORY CONTROL SYSTEM CALLS Page 3-12

3.4.2 The Bank Switching Process

Memory bank switching is p~rformed by the job scheduler by a simple sequence
of steps:

1. Use the MEMBNK word to locate the currentLy active bank entry.

2. Send the switch-off byte to the port nddress for each control code.

3. Use the JOBBNK word for the next job to be run to locate the bank
entry for that job.

4. Send the switch-on byte to the port address for each controL code.

5. Store the new job's JOBBNK data into the MEMBNK word for next time.

3.4.3 The BNKSWP Monitor CaLL

Under normal operation of the AMOS system each user is confined to an area
that resides totaLLy within anyone defined memory bank. The BNKSWP caLL
may be used by a more sophisticated assembLy Langua~e routine to aLlow one
user to access mor~ than one bank of memory~ The BNKSWP monitor caLL
expects register R1 to contain the address of word 4 of the bank which is to
be activated (simiLar to the automatic operation which uses the address
within the JOBBNK word). The currentLy active memory bank is switched off
and the new bank (per R1 address) is switched on. The MEMBNK word is
updated properLy to refLect the newly activated memory bank. Register R1 is
aLso changed to contain the index to the previousLy operating bank, thereby
allowing a convenient return to reactivate the previous bank if R1 is not
altered.

Note that since the current bank is switched off, the BNKSWP call must be
executed from somewhere
executing instructions
several different ways,
(within the JCB) or
into system memory.

in sharabLe memory to prevent the return from
in the new bank. This can be accompLished in one of
includinq pushing the routine onto y'our stack

executing a speciaL subroutine which has been Loaded

On a Memory Partition ControLLer (MPC) system (see reference in section
3.4.1 above), the BNKSWP call functions the same as it does on a bank
swapped system, except that R1 is expected to point to word 3 of the MEMDEF
queue eLement describing the memory partition the caLLer wants to map in.
The same restrictions that existed before stiLL appLy. The user must check
bit 15 in the SYSTEM word residing in the system communications area. If
it's on, he must reaLize that the MEMDEF queue is structured differently
than it wouLd be on a bank swapped syst~m.

ME~ORY CONTROL SYSTE~ CALL~

3.4.4 Th~ DMADDR ~onitor CaLL (For Memory Partition ControLLp.r)

The AM-7DO or Memory Partition ControLLer transLates memory addresses for
DMA devices as weLL as for the ~~-100/T processor. This feature aLLows DMA
activity to occur in one job's partition concurr~ntLy with another job
runnin9 in vnother partition. On bank swappin~ systems, onLy the job that
is doing DMA activity can be running. ALL other jobs are Locked out for the
duration of the DMA operation. Device orivers for DMA 1/0 devices (P.g.,
the magnetic tap~) must incLude a DMADDP monitor caLL when executing on an
MPC system. The one argum~nt passed to the DMADDR is the D~A LeveL of the
device. When caLLed, DMADDR sets up the appropriate base address and Limit
address registers on the MPC. If DMADDR is caLL~d on a system configured
without the MPC, nothing is done at aLL.

In order to utiLize the advantages of the MPC, the driver shouLd test the
word SYSTEM in the system connumications area; if bit 15 is set, other iobs
shouLd be aLLowed to run whiLe DMA activity is ongoing. If hit 15 is not
set, the normal bank-swappin9 code shouLd be executed. The caLLing sequ~nce
for DMADDR appe~rs as foLLows:

DMADDR DMALEV ; Set up MPC hardware for this DMA activity.

DMALEV is the DMA Level of the device, which is constant for any particular
device but chan9ps from one device to another. There are no return
arguments from DMADDR.

(For a more compLete expLanation of the Memory Partition ControLLer, refer
to the "System Operator's Information" section of the AMOS Software Update
Documentation Packet.)

CHAPTER 4

LOADING AND LOCATING MEMORY MODULES

Memory modules may contain an optional filenam~ and ~xt~nsion, which may be
used to locate modules, both in memory and on the disk. This chapter deals
with locating and toading modules via these optional filenames and
extensions. Normally, when you enter a command from th~ terminal, AMOS
first searches for the reauested program in th~ resident system memory area,
then in your own memory partition. If the program is resident in either of
these places, it need not be loaded in from disk, and execution begins
immedi8tely using the resident program in system or user memory.

4.1 THE SRCH AND FETCH CALLS

The user may make use of two monitor calls (FETCH and SRCH) for locating and
loading modules in memory by name. In actuality, the SRCH call is a
specialized v~rsion of the FETCH call and is included only for convenience
and compatibility with older programs that are still in the system.
Basically, the SRCH call only locates a module if it is in memory, while the
FETCH call automatically loads a module into memory from the disk if it is
not found to be in memory alreaoy.

80th calls have the same basic format:

SRCH
FETCH

nameblock,index,control-flags
nameblock,index,control-flags

4.1.1 Specifying the Module Name

Nameblock is a standard argument used in the SRCH and FETCH calls to specify
the name of the module to b~ located or loaded. The format of the actual
nameblock referenced is different in each CAse, however. In the case of the
SRCH call, nameblock refer.s to a 3-word ~lock of memory (or 3 contiguous
registers) containing the filename and extension of the desired module in
R~D50 packed form. For the FETCH call, nameblock refers to a full file
Dataset Driver Block (DDB) which allows the user to specify a full disk file

LOADING AND LOCATING MEMORY MODULES Page 4-2

specification to load the module from in case it is not Locat~d in memory.
The DDS has not yet been introduced and is defined and explained in section
6.1.1. In brief, the DDS is a 24 (octal) word area in mp.mory which contains
all the information and work areas to define and manipulate a specific disk
file in any area on any defined disk device. The DDS is normally set up by
processing an ASCII fiLe specification with the FSPEC calL (more on this
later) •

4.1.2 The Module Address

The second argument is the index w.hich is to receive the absoLute memory
address of the located (or Loaded) memory moduLe data area. Refer to figure
3-3 in the preceding chapter for the layout of the memory module and the
pLace that this index is set to. The index argument is also a standard
argument, although the normaL mode is to receive the moduLe address in a
generaL register (RO-RS). If the index argument is not specified in the
calL, the defauLt used is register RO which is compatibLe with oLder
versions of this system.

4.1.3 Flags

The third argument is the optionaL controL fLags which may be used to
controL the operation of the SRCH and FETCH caLLs. This argument is any
vaLid expression which evaLuates down to a vaLue in the range of 0-17
(octaL). OnLy the low order four bits are significant and they have been
given the foLLowing mnemonic definitions in the system Library SYS.MAC:

F.FCH=1
F.USR=2
F.ASS=4
F. FIL=10

;Fetch moduLe from disk if not in memory
;Search user memory onLy
;Load absoLute segment from disk
;Set moduLe permanent fiLe fLag after Load from disk

4.1.3.1 F.FCH - Fetch ModuLe From Disk - F.FCH is the fLag that actuaLLy
differentiates the SRCH caLL from the FETCH caLL, since they both
technicaLLy are the same SVCB supervisor caLL. The SRCH call forces this
bit off whiLe the FETCH calL forces this bit on. When set, the F.FCH bit
causes the nameblock to be interpreted as a fuLL file DDS and the module to
be loaded from disk if not located in memory first. Since the use of this
bit is controLled by specifying either SRCH or FETCH as the calLing opcode,
you shouLd not incLude this bit in the control-fLags argument of your caLL.

LOADING AND LOCATING MEMORY MODULES PagE' 4-3

4.1.3.2 F.USR Bypass System Memory Search - F.USR is the fLaq used to
specify bypassing the searching of the resident system memory area for the
moduLe and procE'ed directLy to sE'archin~ the user area only. This aLlows
specific versions of modules to be loaded and used even though they may be
duplicated in the system mE'mory area. This flag is not normally USE'd by
programs other than system software.

4.1.3.3 F.ABS - Bypass Memory Search - When set, F.ABS forces a direct
search to the disk for the requested module, bypassing all memory searches
that would normally occur. The module is then loaded into memory ~t the
ahsolute address specified by the indf'x C1rgument in the call ing seouence.
No housekeeping words are allocated, and the first word of the module gets
loaded into the first word specified by the index argumf'nt. Note that this
form is the only time the index ar~umf'nt is used to pass an address to the
FETCH processor instead of bein~ used to receive the address of the located
module. The F.ABS form of thE' FETCH call is used to load program segment
oVE'rlays.

4.1.3.4 F.FIL - Mark ModulE' as Permanent - F.FIL is used to force the
permanent file flag bit on in thf' module flag word after the module has been
Loaded from disk. The FETCH caLL always places the fiLename and extension
into the housekeeping worns 3-5 so pven if the module is onLy temporary, it
may stilL be Located by name as long 2S the program which loaded it is stiLL
active. This is usefuL for dynamic lo?ding of suhprograms and/or nata
moduLes. SE'tting the F.FIL fLaq on in the controL-fLags argument mE'ans that
the moduLe wiLL not be dpLetE'd from memory by the operating system when the
caLLing program finaLLy exits. The operator LOAD command uses this method
to Load a program into memory and Leave it thpre to be caLLed by name.

4.1.4 Completion Codes

When the SRCH or FETCH caLL returns, the user must test the status of the
Z-bit to seE' if the moduLe ~'as located or Loaded SUCCE'ssfuL Ly. If the Z-bit
is SE't (tested by BEQ), the operation was successfuL. If the ~-bit is not
set (tested by BNE), the moduLe was either not Located or would not fit into
the remaining free memory within the user's partition.

CH~PTER 5

MONITOR QUEUE SYSTEM CALLS

The monitor aueue is a List of bLocks in system memory which ~re Linked to
each other in a forward chain. The base of this chain, and the count of the
bLocks in the chain, are contained in the QFREE monitor communications words
(see Appendix B). Each au~ue bLock in the chain links to the next one by
storing its ~ddress in the first worn of the queue block. The Last queue
bLock in the chain contains a zero link word to fLag it as the end. Each
queue block is currently 8 words (16 bytes) in size, althou~h this vaLue may
increase ~ith the next release of the fiLe system. The monitor initi~Lly
contains 20 blocks in the av~ilable queue list.

During normal monitor operation various functions use these queue blocks to
perform certain tasks. When a routine needs a queue bLock, it issues a QGET
monitor call, which delivers the first avaiLable queue block by returninq
its base address in register R3. The routine then uses this area to
temporarily store information during processing. When the routine no longer
requires the block, it issues a QRET monitor call, which returns the queue
block to the availabLe list for later re-use.

The monitor queue system is necessary to provide storage for interrupt
driven hardware (AM-300 hoard) and for storaRe during memory management
operations. The queue bLocks always reside in sharabLe system memory and
therefore may be used by interrupt routines without regard to memory
management context switching. The monitor queue system will be used more
and more as the monitor is improved but is also available to the user if
desired. The XLOCK subroutine (for multi-user locks in AlphaBasic) uses the
monitor queue system to store the lock parameters.

5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE

It is apparent that the number of queue blocks in use at anyone time varies
with system loading, number of users, and tasks being performed. Some
applications may demand a larger available list of queue blocks to insure
safe system operation. Due to overhead restrictions, no check is performed
to see if the available queue is exhausted. However, you can increase the
size of the available queue list during system startup time.

MONITOR QUEUE SYSTEM CALLS Page 5-2

The monitor is initially generated with 20 free blocks in the avaiLabLe
queue. At any time in the SYSTEM.INI fiLe prior to the finaL SYSTEM command
you may execute the QUEUE nnn command which aL Locates "nnn" more queue
bLocks for generaL use. A typicaL increase for a large system with several
users running extensive appLications might be 100 more blocks for a totaL of
120.

Once the system is up and running no more queue blocks may be added to the
list, so you must give your best guess at your totaL requirements. The
QUEUE command takes on a new life once the system is running. If you type
the QUEUE command, the system responds by typing back the current number of
free queue blocks in the avaiLabLe queue List. It is by this method that
you may keep a cLose eye on the reLationship betw~en the system operation
and queue bLock usage.

5.2 QUEUE BLOCK USAGF. BY THE SYSTEM

This section Lists the areas of the monitor which currentLy make use of the
queue system, to give you a better idea on how to estimate your particuLar
needs. Remember that this List wiLL probabLy expand in future reLeases of
the monitor. ALso, add to this any appLications that you may write which
incLude the QGET and QRET caLLs (described in section 5.3).

The terminal service system makes frequent use of the queue system during
output operations. A typicaL terminaL driver may have up to four or five
queue bLocks in use at anyone time, for linking buffers and storing
immediate data vaLues.

The monitor SLEEP caLL uses one queue bLock during the time the job is
asLeep.

The Persci disk driver uses one queue bLock whiLe the head is Loaded.

The XLOCK ALphaBasic subroutine uses one queue bLock for each separate
system Lock that is currently active by any job. This block is not returned
to the avaiLabLe list untiL the Lock is reLeased by the job that has it
locked.

The FLOCK ALphaBasic
with the number of jobs
time, and the number
during the use of FLOCK,

subroutine lIses a number of queue blocks that varies
accessing fiLes, the number of fiLes open at one
of records open for each fiLe. At any given moment
the numher of Queue bLocks being used eauaLs:

twice the number of different fiLes open using FLOCK, pLus
the number of different records open using FLOCK, plus
the number of jobs with fiLes open using FLOCK, pLus
the totaL number of FLOCK opens (i.e., # of Action D's)

that haven't been r.Losed, pLus
the totaL number of record uses (i.e., # of Action 3's)

that haven't been reLeased

~ONITOR QUEUE SYSTEM CALLS PaqE' 5-3

The Last two factors of the above equation ~nticip~te circumstances where
the same fiLe and/or the same record is being accessed by more than one job
at a time. If two jobs are readin~ the same file, that is two opens or two
Action O's.

The line printer spooler, as of version 4.1, uses the queue system to store
the printer queue as welL as a List of printers connected to the system.

5.3 QUEUE SYSTEM MONITOR CALLS

You can utiLize the monitor queue system by using one of the four monitor
queue management calls (QGET, QRET, QADD, QINS). These caLLs are fast for
use in interrupt level routines. All caLls work through register R3 and no
other registers are disturbed. Since most queue blocks wilL be uspd in some
form of sharabLe resource chain or interrupt levpL routine, the processor
must be locked before executing any of the queue management calls.
Violating this rule could destroy the available queue List or result in
inter-job errors. None of the calls require any arguments to be passed
except for the address in R3.

5.3.1 QGET - Obtain a Free Queue BLock

This calL obtains the first free queue block from the available list and
returns its base addrE'ss in R3. The Z-fLag is set if the queue block was
avaiLable, and is reset if no queue bLocks were available. The queue block
is first removed from the available list, nnd then aLL words in thE' block
are cleared to zeros.

5.3.2 QRET - Return a Qupue Block

This calL returns a queue hLock to the available queue list in the monitor.
The address which was in the first word of the block (usualLy a link to the
next block in your chain) is returned in R3 after the bLock has been linked
back into the available queue list. All queue blocks that have been
allocated by QGET, QADD or GINS should eventually be returned to the monitor
by the QRET call when they are no Longer needed.

5.3.3 QADD, GINS - Manipulating Queue Blocks

SimiLar to the QGET call, these two calls obtain the first free queue block
from the available list. The Z-flaq is set if the queue block was
available, and is reset if no queue blocks were available. tf availabLe,
the queue block is linked into your own specific list whose address is in
R3. This is because most system calls use queue blocks as eLements of some
specific List, dppending on the application. The XLOCK subroutine, for

MONITOR QUEUE SYSTEM CALLS Pagp. 5-4

instance, maintains a List of aLL active system Locks and adds or deLetes
queue bLocks from this List as Locks are set ann reset.

The standard format of these individuaL Lists foLLows the format of the free
List. Each bLock Links to its successor by storing its address in the first
word of the bLock. ALL other words in the queue bLock are avaiLabLe for th~
storage of specific data. The Last block in the List contains a zero in
word 1 to mark the end of the List. The QADD call scans down the chain
marked by the address in R3 and then inserts the new queue bLock at the end
of the existing list. The QINS caLL inserts the new queue bLock in thp
chain at the point indexed by R3 and Links the remaining list eLements (if
any) to the newLy inserted block. Roth caLLs then return the address of the
second word of the new queue bLock in R3. This is the base of the data area
of the queue bLock where you may store the data.

Remember that the current size of each queue bLock is eight words in Length.
The QADD and QINS caLLs pLace a Link in the first ~ord, Leaving seven words
of data storage for your appLication. The QRET caLL aLways requires the
address of the first word when returning the queue bLock to the availabLe
List, regardLess of the caLL used to obtain the bLock.

CHAPTER 6

THE FILE SERVICE SYSTEM

The AMOS monitor has a simpLe y~t powerfuL device-independent fiLe service
system which reLieves the programmer of the task of 1/0 coding for each
devic~ with which he wishes his program to interface. In addition to this
device independence, the monitor cont8ins aLL routines to manage the disk
fiLe system on a logic2l-calL basis. The programmer need not be concerned
with the exact physical placement of files on the disk except in rare
instances where the system software is being deveLoped or tested. The
monitor aLso contains an efficient means for deveLoping new device drivers
to be incorporated into the system when unsupport~d devices must be
interfaced. This section gives a generaL overview of the fiLe service
system and describes the Dat~set Driver Block <abbreviated as DDR) which is
the descriptor Link for alL 1/0 and fiLe caLLs to the monitor.

6.1 THE DATASET DRIVER BLOCK

ALL 1/0 operations and fiLe operations are accompLish~d by monitor caLls
with reference to a DDB, which defines the rlevice or fiLe being operated
upon. Whether the operation is to a unit-record device such as a printer,
or to a specific fiLe within a fiLe-structured device such as a disk,
depends upon the parameters passed to the monitor through the referenced
DDB. There is no Limit to the number of devices or files that may be active
at any given time, but there must be one sepnrate DDB for each device or
file in use concurrentLy. There are no internal channeL numbers or device
numbers to Limit the number of concurrentLy active devices or files. The
general sequence of events for the compLete processing of a device or file
operation can be summed up as follows:

1. The DDS is set up with the defining parameters such as device name,
drive number, fiLename and extension, project-rrogrammer number,
etc. This data normaLLy comes from the processinq of an ASCII file
specification such as DSK1:FILTST.MAC[101,1J by an FSPEC caLL.

2. The 1/0 buffers are aLLocated either directLy hy the user program
or by an INIT calL referencing the DDB in use.

THE FILE SERVICE SYSTEM Page 6-2

3. The logical opening processes for the devicp. or filp. are perform~d,
normally by an OPEN call referencing the DDS.

4. Data transfers to or from the device are performed by either READ
and WRITE calls for physical tr?nsfers or INPUT and OUTPUT calls
for logical transfers.

5. The LogicaL cLosing processes for the device or fiLe are performed,
normaLLy by a CLOSE caLL referencing the ~~S.

The monitor contains compLete error processing routines which aLlow the
programmer to specify (by fLags in word 1 of the DDS) whether any
uncorrectabLe errors are to result in an automatic error mpssage to the
operator on his terminaL, an aborting of the program and return to monitor,
or both. You may aLso eLect to process the errors yourself by checking th~
error code returned in word 1 of the ~os.

6.1.1 DDS Format

Figure 6-1 shows the format of the DDS which must be aLLocated within the
user program area and set up by th~ user before any 1/0 operations can take
pLace. The OOB is 24 (octal) words in size and is usuaLly aLLocated by a
SLKW 24 statement. The DDS can be assigned any tag which wilL then become
the reference tag for aLL subseauent operations to that dataset. Some of
the items in the DDS you must set up before certain operations may be caLLed
for, while other items are set up and used by the monitor fiLe service
routines. The foLLowing descriptions expLain the use of each item.

6.1.1.1 Error Code - This byte is set to a non-zero code at the compLetion
of an 1/0 operation that was unsuccessfuL for various reasons. A zero
indicates the operation was successfuL. You need to test this byte onLy if
the error controL fLag in the fLags byte (00B+1) specifies returning to the
user on an error condition or if the oppration aLLowed a non-fatal error
condition to occur. The prror codes are listed at the end of thi~ section.

THE FILE SERVICE SYSTEM Page 6-,:)

DDB: Flags I Error Code

+2 Buffer Address

+4 Record Size

+6 Buffer Index

+'10 Record Number

+'12 Driver Address

+14 ~CB Address

+'16

+20

~ob Priority

Device Code

~" FILNAM .EXT[1D1,4l

+22 Call Level I Drive

+24 Filename

+26

- 1 -

- -
+30 Extension

+32 PPN

+34 I Open Code

+36
I- -

+40
I- Driver Work Area -

+42
r- (S words] -

+44

- -
+46

Dataset Driver Block

Fig 6-'1

THE FILE SERVICE SYSTEM Page 6-4

6.1.1.2 FLags - This byte is used to controL the fLow of the I/O operation
and the handLing of error codes by the fiLe service routines. The foLLowing
functions are controLled by the eight fLag bits:

o - set by user to force a return on error condition (abort if cLear)
1 - set by user to bypass printing of error messages on prror conditions
2 - reaL-time transfer fLag (currentLy not impLemented)
3 - spare
4 - transfer initiated (for internaL fiLe service use onLy)
5 - read if 0 or write if 1 (for internaL fiLe service use onLy)
6 - device INITed - set by INIT caLL or user if explicit buffer in use
7 - dataset busy (transfer initi~ted or queued)

6.1.1.3 Buffer Address - This is the 16-bit absoLute address of the base of
the buffer to be used for aLL dataset transfers (read and write). It is set
by the INIT caLL which aLLocates a buffer, or by the user program if it is
alLocating its own buffer and not using the INIT caLL. This address is used
in conjunction with the fLag bit 6 above, which indicates that a buffpr has
been aLlocated either by the INIT caLL or by the user. No transfers can
take place without a buffer.

6.1.1.4 Record Size - This is the size in bytes for the physicaL transfer
to use. The READ call transfers this number of bytes from the device to the
user buffer beginning with the address in DD8+2. The WRITE calL transfers
this number of bytes from the user buffer to the user device. The INIT caLL
sets this size to the standard buffer size, or YOll can set the size if you
are doing your own buffering. You may modify the size for transferring
records of variabLe sizes as Long as it does not exceed the buffer size of
the capacity of the device or driver in use. Various Lo~icaL fiLe service
routines set this size word during processing, such as the OPEN caLL for the
disk which must perform directory operations on a ~12-byte buffer at aLL
times.

6.1.1.5 Buffer Index - This is a byte counter which is used by LogicaL
routines (INPUT and OUTPUT caLLs) for keeping track of bytes transferred
into and out of the user buffer. Various caLLs reset this vaLue, and you
then use it and increment it as bytes are transferred into and out of the
buffer. DetaiLs are given in Later sections where the caLLs themseLves are
described. This buffer index word is normaLLy not a true buffer pointer but
rather an offset from the buffer base (per DOB+2) to the current byte being
manipuLated.

THE FILE SERVICE SYSTEM Page 6-5

6.1.1.6 Record Number - You set the record number to read or write a
specific random record from a random access device such as disk. The first
record on the device is considered record zero, and the record numbers
increment sequentiaLLy from there. This record number is actuaLLy used onLy
by the physicaL driver routines for READ and WRITE calLs, but other Logical
caLLs set this word to perform transfers to specific disk areas such as
directory operations on disk. Most non-disk devices are not random access,
in which case this record number is ignored by the respective drivers.

6.1.1.7 Queue Chain Link - This word is for internaL use onLy, It is the
Link used by the I/O queueing routines for interrupt driven transfers. You
shouLd not aLter this word.

6.1.1.8 JCB Address - FiLe service routines store the address of the
controLLing job1s JCB so that interrupt driven drivers can Locate the
corresponding job for activation on transfer compLete status. This word is
aLso for internaL use only.

6.1.1.9 Job Priority - The current software job priority
fiLe service routines to specify the priority of the
operations. This byte is for internaL use onLy. The top
(008+17) is currentLy not used.

is set here by
transfer in queued
byte of this word

6.1.1.10 Device Code - The 3-character device code (packed RAD50) must be
set here by an FSPEC caLL or directLy by the user before any I/O operations
may be performed.

6.1.1.11 Drive - Used onLy by drivers for devices with muLtipLe drives,
this byte must be set to specify the drive to be used for the transfer. A
-1 byte (octaL 377) may be used to indicate the current defauLt drive
number. If the device is DSK, the default drive used is the drive onto
which you are currentLy logged. Other devices may have different defauLts.

6.1.1.12 CaLL LeveL - For internaL use onLy, this byte is used to keep
track of the level of nesting of the fiLe service caLLs for proper error
recovery handling. This byte must be zero before the first fiLe caLL is
executed.

THE FILE SERVICE SYSTEM

6.1.1.13 FiLename and Extension - These
RA050 packed fiLename and extensio~
words are ignored by drivers for devices
they may cause inaccurate error messages

Page 6-6

are three words which contain the
for fiLe-structured devices. These
which are not fiLe-structured, but
if they are not set to zero vaLues.

6.1.1.14 PPN - This is the octaL project-programmer bytes for the area to
be used to Locate the fiLe. It is used onLy on fiLe-structured devices
which are muLti-user based such as disk. A zero causes the defauLt vaLue to
be the current PPN which the job is Logged in under. To prev~nt inaccurate
error messages, this word shouLd be zero, if not used.

6.1.1.15 Open Code - This byte is set by the OPEN caLL to indicate the mode
of the open statement for future processing operations. It is normaLLy
ignored by drivers for devices which are not fiLe-structured. It is for
internaL use onLy and shouLd not be modified by the user. The corresponding
top byte of the word (00B+35) is currentLy not used. The foLLowing open
codes are in use:

0 file is not open
1 - fiLe is open for sequentiaL input (OPENI caLL)
2 file is open for sequentiaL output (OPENO caLL)

10 file is open for appendin!l (OPENA caLL)
4 - fiLe is opp.n for random input / out put (OPENR cal L)

6.1.1.16 Oriver Work Area - The remaln1ng five words are for internal use
by the device drivers for Links, record counts, etc., and should not be
modified by the user during proc~ssing. Not aLL drivers make use of the
work area, but it must be th~re if device independence is to be preserved.

6.1.2 Oevice Transfer Buffers

Each dataset must have an associated transfer buffer to handle input and
output operations. This buffer must be allocated either directly or through
use of the INIT caLL which aLlocates the buffer as a memory module by using
a GETMEM caLL. The INIT calL aLLocates a standard size buffer for the
device being used (the size of the buffer is defined within the driver
itself). If you do not wish to use the INIT calL, you may aLLocate any size
buffer you wish (must be Large enough for any logicaL caLLs to be performed)
and then set its andress in 008+2. Refer to the section detaiLing the I/O
calLs themselves for more details on the use of these buffers.

THE FILE SERVICE SYSTEM Page 6-7

6.1.3 Error Handling

When an error occurs during any file service call, the file service routines
normally pprform typicaL prror correction procedures. If the error is fatal
(uncorrectable), two operations mayor may not take place depending on the
setting of bits a and 1 in the flags byte at 008+1. First, bit 1 is tested
and if it is not set, the monitor outputs a standard error message to the
user terminaL, giving the type of call that failed, the file specification
for the device that the error occurred on, and the reason for the error.
Thp appropriate error code is also placed in the error byte at OOS+O for
later testing by the user. Second, bit n of the flags byte is tested and if
it is not set, the user program is aborted by the file service system and
you are returned to monitor mode. You normalLy set these bits on before any
I/O calls are made, if you wish to process the errors within the user
program itseLf.

6.1.3.1 Error Codes - The followinq list gives the error code (in octal)
returned in the DDS error byte by the file service system, along with the
reason for the error:

01 - file specification error (FSPEC)
02 - insufficient free memory for buffer allocation (INIT)
03 - file not found (OPENI, OPENR, OPENA, DELETE, RENAME)
04 - file already exists (OPENO)
05 - device not ready (aLL calls)
06 - device full (OUTPUT)
07 - device error (all calls)
10 - device in use (ASSIGN)
11 - illegal user code (all file calls)
12 - protection violation (OPENO, OPENR, DELETE, RENAME)
13 - write protected (aLL output calls)
14 - file type mismatch
15 - device does not exist (all calls)
16 - illegal block number (READ, WRITE)
17 - buffer not initiated (all caLls except INIT)
20 - file not open (READ, WRITE, INPUT, OUTPUT, CLOSE)
21 - fiLe already open (all OPEN calls)
22 - bitmap kaput (alL disk bitmap calls)
23 - device not mounted (all calls)
24 - invalid filename (OPENO, FSPEC, DSKCTG)

At the conclusion of every file service monitor call, the error byte at the
base of the DDS is tested for the convenience of the user program. This
aLlows YOll to test for an error status directLy after the caLL with a BNE
instruction without having to first explicitly test the byte with a TST8
instruction. This, of course, only cppLies if you have the error trapping
bit set in the DDB status word to prevent the job from being aborted on a
file error.

THE FILE SERVICE SYSTEM Paqp 6-8

6.2 FILE SERVICE MONITOR CALLS

This section describes the fiLe service calls which are available to the
user program for both logical and physical I/O operations. All calls have
the same generaL format, which uses a single argument representing the
dataset driver block (OOB) to be used for the operation. See the preceding
chapter for a complete description of the OOB format. In brief, the calls
described in this section are:

FSPEC
INIT
LOOKUP
OPENI
OPENO
OPENA
OPENR
CLOSE
REAO
WRITE
INPUT
OUTPUT
OELETE
RENAME
ASSIGN
OEASGN

process a device specification
initialize a dataset driver block buffer
Lookup a fiLe to see if it exists
open a file for sequential input
open a fiLe for sequential output
open a fiLe for appending
open a file for random input/output
close a file to further processing
read a physical record
write a physicaL record
read a logical record
write a logicaL record
delete a file
rename a file
assign a device to a job
deassign a dpvice from a job

6.2.1 FSPEC - Process an ASCII Filespec

The FSPEC calL is used to process an ASCIT fiL~ specification from a command
line (or any other ASCII buffer) and set up the parameters in the ODB
according to the results of the processing. The ASCII file sp~cification
must be indexed by R2 and must be in the stand~rd format of
dev:filnam.ext[p,pnJ with a valid termination character, if a short default
specification is used.

The FSPEC call is slightly diff~rent from the rest of the I/O caLls in that
it allows you to use a second argument if you wish. This argument must be
the default extension for the filename parameter to be used in the event
that the file specification does not contain an expLicit extension
(identified by a period after the filename). If the second argument does
not exist, the FSPEC processor does not process the input fiLe specification
past the coLon which terminates the device/drive parameters.

The device code (3 characters) is packed RAOSO and stored in 00B+20 if it
exists as marked by the terminating colon. The drive number is stored in
the byte at 008+22 if it exists. If the device code does not exist, the
current defauLt device (stored in the job's JCB item J080EV) is stored in
008+20. If the drive number is not in the input specification an octaL 377
is stored in 008+22 to flag the default drive number to the device driver.

THE FILE SERVICE SYSTEM PrlgE' 6-9

The fiLename and extension are then processed unLess no second argument was
used in the caLL, in which case the FSPEC processor returns to the user at
this point. The fiLename and extension are packed RA050 and stored in the
three words at 008+24 through 00B+30. If no fiLename is entered in the
input specification, the word at 00B+24 is cLeared to zero to fLag the
absence of the fiLename parameter. If a fiLename is entered but no
extension is entered, then the dE'fauLt extension specified in the second
argument of the FSPEC caLL is stored as the extension in 00B+30.

If a project-programmer number is in the fiLe specification (marked by a
Left square bracket "["), it is processed and stored in 00B+32. If no p,pn
is entered, 00B+32 is cLeared to zero to fLag its ~bsE'nce.

At the conclusion of the processing of thp input file specification, the
indpx R2 is pointing to the termination character (the first character
foLLowing the fiLe specification string). If an error in the input string
is detected, the FILE SPECIFICATION ERROR messag~ is printed (unLess
suppressed by bit 1 in ODB+1) and the proqram is aborted (unLess suppressed
by bit 0 in 008+1). The error code 01 is set in OOB+O p.rror code byte.

No other modifications take pLace to the DDS area except that the error byte
at OOB+O is cLeared at the start of the FSPEC processing. If you do not use
the FSPEC caL L to set up your DOB, you must use some other form of expL icit
code to insure that the OOB is set up properLy to define the dp.vice and fiLe
for any subsequent I/O operations.

6.2.2 INIT - InitiaLize the OOB

The INIT caLL is the normaL means for aLLocating the dataset buffer and
initiaLizing the OOB for processing. The INIT caLL locates the device
driver (searching [1,61 on OSKO: if not in memory), then aLLocates a
standard size buffer based on the size specified in the drivE'r. 8it 6 of
the fLag byte at 00B+1 is set to indicate the initiaLization. The address
of the buffer is set into 008+2, and the size in bytes is set into 00B+4.

No caLLs deaLLocate the buffer once it has been aLLocated by the INIT caLL.
MuLtipLe OPEN-CLOSE processes may be performed on the OOB once the INIT has
been done. The buffer is temporary and is deaLLocated automaticaLLy when
the program exits to monitor, or it can bE' expLicitLy deaLLocated by using
the OELMEM caLL with the address stored in 008+2. RecaLL that the buffer is
aLLocated as a standard memory moduLe with a GETMEM caLL.

NOTE

ALL fiLe service caLLs with the exception of
the FSPEC caLL require the use of a disk
buffer, and therefore must be preceded by
the INIT caLL for processing.

THE FILE SERVICE SYSTEM Page 6-10

6.2.3 LOOKUP - Find the FiLe

This is a form of the OPEN caLL which does nothing except search for the
file and return an error code if it is not found. The file is not actually
opened for processing, ann an OPENI cal L "'list be used if the fi Le is to be
subsequentLy read from. The LOOKUP caLL is usefuL for determining if a fiLe
that is about to be opened for output aLready exists, so that it can first
be deLeted by the DELETE calL. The LOOKUP caLL is ignored for devices which
are not fiLe-structured.

The LOOKUP caLL is aLso usefuL for some system programming techniques since
it returns parameters about the fiLe in the OOB work area. The work area is
Located in the Last five words of the OOB. The first three words of this
work area are loaded with the three word~ of the directory item if the fiLe
is found. These three words are the numher of records in the file, the
number of active data bytes in the last record, and the record number of the
fi rst data record in the fi leo Refer to Appendix A, "Oi sk St ructure
Format," for complete details on the directory format.

6.2.4 OPENI - Open a File for Input

a file in a file-structured device and sets The OPENI caLL locates
OOB parameters <work
results if the file is
the OPENI operation.
INPUT calls which deliver

area) for subsequent INPUT processing.
not found. The code 01 is set into 00B+34

The OPENI caLL is normalLy followed by a
sequentiaL records from the file to

buffer. The OPEN! call is ignored for devices which
file-structured.

6.2.5 OPENO - Open a FiLe for Output

up the
An error
to flag

series of
the user

are not

The OPENO call first searches the specified device in the specified user
area and returns an error if the file aLready exists. If it does not, the
OOB is set up for OUTPUT processing. The code 02 is set into 00Bt34 to flag
the OPENO operation. The OPENO calL is normaLly foLLowed by a series of
OUTPUT calls which transfer data from the user huffer to sequentiaL records
in the file. The OPENO call is ignored for devices which are not
fi le-structured.

6.2.6 OPENA - Open and Append to Existing File

The OPENA call is similar to OPENO, except that it allows you to append data
to an existing fiLe. The code 10 is set into 00B+34 to flag the OPENA
operation. The OPENA call is normally followed by a series of OUTPUT calls
which transfer dcta from the user buffer to the end of the file. This call
is ignored for devices which are not file-structured.

THE FILE SERVICE SYSTE~ Page 6-11

6.2.7 OPENR - Open a FiLe for R~ndom Processing

The OPENR executes basicalLy the Sr.lme <'IS the OPENI caLL, but the code stored
in DD8+34 is 04 to fLag random processing. The fiLe Located for random
processinq must be a contiguous file. The OPENR call is normally followed
by a series of INPUT and OUTPUT calLs which transfer data between specific
records in the file 8nd the user buffer in both directions. The OPENR call
is aLso ignored for devices which are not file-structured.

6.2.8 CLOSE - Close a FiLe

The CLOSE call finishes up Logical processing of a file and clears the open
code in 008+34. No furthpr INPUT or OUTPUT operation may occur once a fiLe
has been closed. No action is norm1.'llly done on a file \oo,hich is open for
input. For files open for output, the final record is written out and the
file is added to the directory system on the specific device. The CLOSE
call is ignored for devices ~hich are not file-structured.

6.2.9 READ - Perform a Physical Transfer

This is the physic~L transfer call for reading input data from a device. No
check is made for file open status since the READ caLL is not'a logical file
call.

6.2.9.1 Sequential Devices - For sequential access devices such as a paper
tape reader, the READ call delivers one record from the device to the user
buffer. The size of this record is normaLLy the number of bytes specified
in DD8+4, but this m~y not necessariLy be true if the drivpr does not
transfer under the rules of the system. If the device is not capable of
generating the requested number of bytes per DDB+4 (such as a tape reader
which runs out of tapp), a Lesser number may he transferred in which case
the count in 008+4 is adjusted to reflect the true number actually
transferred to the user buffer.

6.2.9.2 Random Devicps - For random access devices such as disk, you must
specify the record number to be Located and read, by placing that number
into 008+10 before executing the READ call. Most random access devices
always transfer the requested number of bytes per DD8+4 into the user
buffer. (If the buffer is larger than the physical block, the system reads
multiple contiguous blocks to fiLL up the ~uffer.) An error results if the
record number is not ~ithin the range of the specific device. For example,
the standard AMOS floppy disk is structured as 500 (decimal) records of 512
bytes each. The legal record numbers therefore range from a through 499,
decimal. Similar range restrictions apply for each random device.

THE FILE SERVICE SYSTEM Page 6-12

6.2.9.3 Interrupt Structure - The system aLLows interrupt driven devices to
be queued and processed in a priority fashion. NormaLLy, the execution of a
READ caLL suspends the running of the user program untiL the transfer has
been compLeted, at which time the user job is reactivated. You must then
either test the dataset busy bit (bit 7) of the fLag byte or use the WAIT
caLL to stall untiL the transfer has been completed. The dataset busy flag
is reset when the transfer has been completed. You must then check for
errors. The realtime bit is ignored for devices which are not interrupt
driven or whose drivers do not run under the I/O queue system.

6.2.10 WRITE - Perform a Physical Write

This is the physical transfer call for writing data to a device. No check
is made for fiLe open status, since the WRITE caLL is not a logical file
caLL.

6.2.10.1 SequentiaL Devices - For sequential access devices such as a
printer, the WRITE call delivers one record to the device from the user
buffer. The size of this record is the number of bytes specified in 008+4.
The driver is responsible for the correct transfer count, and you may aLter
the number in 00B+4 for each new WRITE calL to the same device for the
writing of variabLe Length records.

6.2.10.2 Random Devices - For random access devices such as disk, you must
specify the record number to be located and read, by placing that number
into 008+10 before executing the WRITE call. Most random access devices
always transfer the reouested number of bytes per ODB+4 into the user
buffer. An error resuLts if the record number is not within the range of
the specific device. The standard A~OS fLoppy disk is structured as 500
(decimaL) records of 512 ~ytes each. The legaL record numbers, therefore,
range from 0 through 499, decimal.

6.2.10.3 Interrupt Structure - The system allows interrupt driven devices
to be queued and processed in a priority fashion. NormaLLy, thp execution
of a WRITE call suspends the running of the user program until the transfer
has been completed, ?t which time the user job is reactivated. The user may
optionally set the realtime bit (bit 2) in the flag byte at ODB+1 to force
an immediate return to the program once the transfer has been queued or
initiated. You must then either test the dataset busy bit (bit 7) of the
flag byte or use the WAIT call to stall until the transfer has been
completed. The dataset busy flag is reset when the transfer has been
completed. You must then check for errors. The realtime bit is ignored for
devices which are not interrupt driven or whose drivers do not run under the
I/O queue system.

THE FILE SERVICE SYSTEM Page 6-13

6.2.11 INPUT - Perform a logical Read

The INPUT call is the logical equivalent of the READ call for logical
processing of datasets. The INPUT call r~ads a logical record within a file
or device dataset under the control of the specific driver in use. A
dataset must be opened for input (OPENI) or random access (OPENR) before
INPUT calls are p~rformed. The INPUT call first sets the standard buffer
size into DDB+4, so you mAy not use this call to transfer non-standard
record sizes. The number of bytes actually read may be less than the

. standard record size due to the driv~r processing or due to an end-of-file
condition. The actual number of bytes transferred is set into DDB+4 by the
driver routine.

6.2.11.1 Sequential File Processing - The INPUT call is mainly used in
logical sequentiaL file processing; it sets up the buffer index value in
DDB+6 to direct the processin~ of the data by th~ user routines. This index
value is actuaLLy the offset to the first byte of vaLid data within the user
buffer, whose base address is at DD8+2. For unit record devices, the vaLue
is zero since aLL data within the buffer is user data. For sequentiaL disk
fiLes, how~ver, th~ first word in each record within the fil~ is a link word
to the next record; therefore, the vaLue set into DDB+6 by the disk driver
is 2, so that processing starts with th~ third byte in the user buffer.

6.2.11.1.1 Example - The following subroutine is normaLly used to get each
byte of data from a sequential file:

;Subroutine to get next hyte from file d~fined as INDDB and Leave it in R1 . ,
INBYTE:

INBG:

CMP
BlO
INPUT
CMP
BEQ
PUSH
ADD
MOVB
AND
INC
RTN

INDDB+6,INDDB+4
INBG
INDDB
INDDB+6,INDDB+4
INEOF
INDDB+2
INDDB+6,@SP
@(SP)+,R1
#377,R1
INDDB+6

;is the buffer empty?
; no - get next byte
;read n~xt logical record into buffer
;check for end of fiL~ (no data transf~rred)
; go to end of fiLe routine
;stack the buffer base address
; and add the index offset to get position
;pick up the next byte from user buffer
;insure upper byte is cL~ared in R1
;increment the buffer index for next time
;subroutine return

6.2.11.2 Random FiLe Processing - A speciaL situation arises for fiLes
opened for random access by the OPENR caLL. Instead of the next sequentiaL
record being read, the specific reLative record whose number is in DDB+10 is
read into the user buffer. You first set this number up and then execute
the INPUT caLL. The record number is actuaLLy reLative to the base of the
fiLe and has no direct reLationship to the physicaL record on the device as
wouLd be returned by a READ caLL.

THE FILE SERVICE SYSTEM Page 6-14

6.2.11.3 Special Devices - For devices that do not implement special
processing of logical calls, the INPUT call p~rforms a READ call instead.

6.2.12 OUTPUT - Perform a Logical Write

The OUTPUT call is the logicaL equivalent of the WRITE calL for logical
processing of datasets. The OUTPUT call writes a logical record to a file
or device dataset under the control of the specific driver in use. A
dataset must be opened for output (OPENO) or random access (OPENR) before
OUTPUT calls are performed. The OUTPUT call transfers the number of bytes
in DDB+4, but it normally does it as a standard record (depends on the
driver in use). We discourage attempts to use the OUTPUT call for
transferring non-standard record sizes.

6.2.12.1 Sequential File Processing - The main use of the OUTPUT calL is in
logical sequential file processing. The OUTPUT call sets up the buffer
index value in DDB+6 to direct the processing of the data by the user
routines. This index value is actually the offset to the first byte
position for valid data within the user buffer whose base address is at
DDB+2. For unit record devices this value is zero, since all data within
the buffer is user data. For sequential disk files, however, the first word
in each record within the fiLe is a link word to the next recordi
therefore, the value the disk driver sets into DDB+6 is 2, so that
processing starts with the third byte in the user buffer.

6.2.12.1.1 Example - The folLowing subroutine is normally used to put each
byte of data to a sequential file:

iSubroutine to put next byte from R1 into file defined as OTDDB
,
OUTBYT:

MOUBYT:

CMP
BLO
OUTPUT
PUSH
ADD
MOVB
INC
RTN

OTDDB+6,OTDDB+4
OUBYT
OTDDB
OTDDB+2
OTDDB+6,@SP
R1,@(SP)+
OTDDB+6

ii s the buffer full now?
ino - add this byte
iyes - write it
istack the buffer base address
, and add index offset to get position
imove data byte to user buffer
iincrement the buffer index offset value
isubroutine return

THE FILE SERVICE SYSTEM Page 6-15

6.2.12.2 Random FiLe Processinq - A speciaL situation arises for fiLes
opened for random access by the OPENR caLL. Instead of the next sequentiaL
record bpin~ written, the ~pecific reL~tive record whose number is in DDB+10
is written out from the user buffer. You first set this number up and then
execute the OUPUT cALL. The record number is actuaLLy reLative to the base
of the fiLe and h8s no direct relationship to the ohysicaL record on the
device as wouLd be written by a WRITE caLL.

6.2.12.3 SpeciaL Devices - For devices that do not impLement speciaL
processinq of LogicaL caLLs, the OUTPUT caLL performs a WRITE caLL instead.

6.2.13 DELETE - DeLete a FiLe

The DELETE caLL deLetes a specific fiLe from a fiLe-structured device. The
fiLename, extension ond p,pn (if used) must be set in the DDB before
executing the caLL. An error resuLts if the fiLe is not found. The DELETE
caLL is ignored for devices which are not fiLe-structured.

6.2.14 RENAME - Rename a FiLe

The RENAME caLL renames a specific fiLe on a fiLe-structured device. The
fiLename, extension and p,pn (if used) ~ust be set in the DDB before
executing the caLL. The new fiLename and extension must be packed RAD50
into the three words immerliately foLLowing the DDB in ~emory. The RENAME
caLL merely Locates the directory item for the fiLe and replaces the three
words which store the fiLename and extension. The RENAME caLL is ignored
for devices which are not fiLe-structured.

6.2.15 ASSIGN - Assign a Device

The ASSIGN caLL is used to assign a non-sharabLe device (such as a printer)
to the current user's job by setting a fLag in the device's entry in the
device table in monitor memory. Once a device has been assigned by this
caLL, any attempt to assign it by another job resuLts in an error. The
device stays assigned to this job un~il deassigned by the DEASGN caLL. The
ASSIGN caLL performs no action if the specified device is sharabLe, such as
a disk.

THE FILE SERVICE SYSTEM Pag p 6-16

6.2.16 DEASGN - Deassiqn a Device

The DEASGN call is used to deassign a device which has been assigned to the
user's job by the ASSIGN caLL. Once deassigned, the device becomes
available for assignment by other jobs. The DEASGN call performs no action
if the specified device is sharable or if it is not currently assigned to
the user's job. All devices are deassigned when the program exits to th~

monitor.

6.3 DISK SERVICE MONITOR CALLS

In the previous section we covered the file-oriented monitor calls. Those
cal Ls allow you to access data fi les without regard to the actual structure
of the data on the device. InternalLy, of course, AMOS does have to deal
with the structure of the data. This section deals with the monitor calls
used to manipuLate that structure. A description of the data structures
used to maintain files on a device can be found in Appendix A, "Disk
Structure Format."

The disk presents special problems which require the use of special monitor
calLs to controL the accessing of the directory and bitmap records. These
records have a non-sharabLe attribute associated with them, even though the
disk in general is a sharable device. For instance, two user programs may
not both be updating the same directory records at the same time. The same
hoLds true for the bitmap records. The folLowing monitor caLLs are used to
controL the access to these non-sharable records:

DSKCTG - aLlocates a contiguous file for random processing
DSKALC - alLocates the next availabLe record on disk
DSKDEA - deal Locates a specific record on disk
DSKBMR - reads disk bitmap and sets re-entrant Lock flag
DSKBMW - rewrites disk bitmap after user modification
DSKDRL - sets re-entrant directory Lock for a specific user
DSKDRU - cLears re-entrant directory lock for a specific user

The access to these records is normaLLy done by the monitor routines as a
direct resuLt of normaL I/O processinq by fiLe service calls. It is a
somewhat tricky process ~nd the disk calLs should not be used except with
extreme caution, since misuse couLd violate the integrity of the fiLe
structure on the disk. The following descriptions are directed at those
system programmers who are familiar with shared file techniaues.

6.3.1 Calling Sequence

ALL calLs use a standard argument which is the address of the associated DDB
to be used for the call. In addition to the first argument which is the
DDB, some calLs use an optional second argument for processing. The second
argument is detailed in the description of the call.

THE FILE SERVICE SYSTE~ Page 6-17

6.3.2 The Bitmap Area

The bitmap area is on area in monitor m~mory which is aLLocated by the
BITMAP program run at system startup time by the BITMAP command in the
syst~m initiaLization command fiLe. This area consists of a status word, ~

DDS for bitmap rpads and writes, And a buffer for the actuaL bitmap
incLuding the hash totaL words. The format of the bitmap area is as
folLows:

BLOW
BLKW
BLKW
BLKW

o
12
Bitmap-si ze
2

;Bitmap status word
;PartiaL DDB for bitmap I/O
;Bitmap blJff~r (si ze depends on device)
;Hash totaL words

The device tabLe entry for each drive has the address of the corresponding
bitmap area to b~ used for that drive. More than one drive may share the
same bitmap area, forcing a rewrite pach time a different drive is
referenced. This is not efficient with re~ard to time but can save some
memory for Larger devices where the bitmap buffer may be severaL hundred
words or more.

6.3.2.1 The Status Word - The status word (first word in bitmap area)
contains two fLags which are used to controL bitmap access. Bit 0 is the
bitmap Lock fLag and is set to fLag that thp bitmap is Locked and being read
or modified by some user job. The DSKBMR call sets this flag on, and it is
up to you to clear it after you have finished the bitmap access and
modification. Bit 1 is the bitmap rewrite flag which is spt to indicate
that one or more modifications have been made to the bitmap in memory, and
that it must be rewritten to disk before oping rliscardpd. If the user
program modifies the bitmap in memory, it must set the rewrite fLag to
insure that the bitmap is rewritten.

6.3.2.2 The Bitmap DDS - The bitmap DDB is a partiaL DDB because no files
are ever referenced, and the rest of the DDB is not needed. The bitmap is
normally allocated as record 2 of each disk, and it extends across
successive records for those devices which overflow one record.

6.3.2.3 The Bitmap Buffer - The bitmap buffer area is the exact size
required to contain the entire bitmap from the disk. Two extra words are
aLlocated to contain the hash total which is used to insure the integrity of
the bitmap in memory and on disk. Each time the bitmap is read, or before
the bitmap is rewritten, this hash totaL is checked and an error results if
it is bad. The hash totaL is merely the double-word binary sum of the
entire bitmap buffer. You must update this hash totaL each time you modify
the bitmap, or else an error results when it is timp to rewrite the bitmap
to disk.

THE FILE SERVICE SYSTEM Page 6-18

6.3.2.4 The Bitmap - The bitmap itself contains one bit for each logical
record on the disk structure. This bit is off if the record is free, and on
if the record is in use by anyone, including the system structure records
themselves. Each word in the bitmap can define up to 16 records. The first
word in the bitmap defines records 0 through 17 (octal) with bit 0 defining
record 0 and proceeding upward throughout the word. The second word defi nes
records 20 through 37, and so on. To define the 500 decimal records in a
standard IBM-compatible AMOS floppy disk, we need 32 words (32 times 16 =
512) with the last word not being totally used. The bitmap itself therefore
takes up 34 words, including the two hash total words.

6.3.2.5 Altering the Bitmap - Altering the bitmap is tricky but the
sequence recommended is:

1. Read the bitmap usi n~ the DSKBMR call
2. Alter the bitmap as necessary (recompute the hash total)
3. Set the rewrite flag (status word bit 1)
4. Clear the bitmap lock (status word bit 0)
5. Rewrite the bitmao usinq the DSK8MW call

6.3.3 DSKCTG - Allocate a Contiguous Area

The DSKCTG call is used to allocate a contigous file on a random access
device. A standard argument is used as the second argument which represents
the number of records to be allocated in the file. A search is made to find
the first availabLe area on the disk which can fuLly contain the requested
number of records. These records are marked as in-use on the disk bitmap,
and a file descriptor item is added to the user directory. The word which
gives the number of bytes in the last record is set negative to flag this
file as contiguous, distinguishing it from the normal sequential files. A
device-full error results if no area can be found on the disk which is large
enough to contain the fiLe.

6.3.4 DSKALC - ALlocate a Record

The DSKALC call is used to allocate one record for use by this user as a
directory record or as a file record. A standard argument is used as the
second argument, which represents the word that is to receive the record
number of the allocated record. An error results if there are no free
records left on the specified disk. A DSKBMR call is first performed to
insure that the current job has access to the bitmap, and then the first
free record is located and marked in use. The bitmap record is flagged as
modified, causing it to be rewritten at the next DSKBMW call or if it must
be swapped out to make room for another bitmap sharing the same area in
memory.

THE FILE SERVICE SYSTEM Page 6-19

6.3.5 DSKDEA - Deallocate a Record

The DSKDEA call is used to deallocate a srecific record on a disk and make
it immediately available for use by another user (or the same user). A
standard argument is used as the second argument, which represents the
address of the word containing the record number of the record to be
deallocated. No check is made to insure that this record is allocated to
either the current user or any other user. A DSKBMR call is first performed
to insure ~hat the current ;ob has accpss to the bitmap, then the specified
record's bit is set to zero to indicate that the record is free. The bitmap
record is flagged as modified to force a rewrite.

6.3.6 DSKBMR - Read the Bitmap

The DSKBMR call locates the bitmap area in monitor memory for the specified
disk and insures that it is not locked by another job. If it is locked, a
stall is made until it is released. It is then locked for this job and a
return is made to the user. The address of the bitmap area is set into the
word specified by the second argument in the calling sequence. The second
argument is a standard argument in format. Refer to the description of the
bitmap area above and note that the second argument receives the address of
this area and not the address of the bitmap itself. You may locate the
bitmap itself because its address is in the second word of the bitmap area
(second word of the bitmap DDB).

6.3.7 DSKBMW - Write the Bitmap

The DSKBMW call locates the bitmap area in monitor memory for the specified
disk and insures that it is not locked by another job. If it is locked, a
stall is made until it is released. It is then locked for this job and
rewritten to disk from memory unless the hash total is ba~. After the
rewrite is complete both the rewrite and lock flags are cleared and a return
is made to the user.

6.3.8 DSKDRL - Lock the Directory

The DSKDRL call locks the directory for the specified drive for modification
by the user program. It is used by such file service routines as CLOSE for
output fiLes, DELETE and RENAME calls. If the directory is already locked
by another job, a stall is made untiL it is released. The user program or
routine must unlock the directory via the DSKDRU call after the
modifications have been made.

THE FILE SERVICE SYSTEM Page 6-20

6.3.9 DSKDRU - Unlock the Directory

The DSKDRU call unlocks the directory for the specified drive after it has
been locked by the DSKDRL call for modification. No action is performed if
the directory is not locked by the current job.

6.4 MAGNETIC TAPE DRIVER MONITOR CALLS

Some monitor calLs allow your assembly language programs to access the
magnetic tape unit driver, MTU.DVR. For information on using the magnetic
tape utility programs, refer to Using the Magnetic Tape Unit in the
"User's Information" section of the AMOS Software Update Documentation
Packet. That document also defines some of the terms we use in the
following discussion.

Before you begin use of MTU.DVR, make sure your magnetic tape units are
defined in your system device table, and that the program MTSTAT.SYS has
been included in the monitor (via the SYSTEM command in the system
initialization command file).

In addition to the magnetic tape drive monitor calls detailed below, you can
use the READ and WRITE calls to input and output data to and from the
magnetic tape unit, in the same way you would use them to perform disk 1/0.

6.4.1 REWIND Arg

This call issues a rewind command to the specified tape unit. REWIND
accepts a standard argument that represents a DDB on which you have aLready
performed an FSPEC, an INIT, and an OPEN monitor calL.

The DDB selects the device to which you want to issue a REWIND command. If
an error results from this call, you see the standard system file operation
error messages (e.g., ?Cannot INIT Devn: - device does not exist).

6.4.2 WRTFM Arg

This call issues a write-file-mark command to the specified tape unit.
WRTFM accepts a standard argument that represents a DDB on which you have
already performed an FSPEC, an INIT, and an OPEN monitor cMll.

The DDB seLects the device to which you want to writp a file mark. If this
calL results in an error, you see the standard system file operation error
messages.

THE FILE SERVICE SYSTEM Page 6-21

6.4.3 FMARK Arg

This calL issues a find-fiLe-mark command to the specified tape unit. FMARK
accepts a standard argument that rppresents a DDB on which you have
previousLy performed an FSPEC, an INIT, and an OPEN monitor caLL. The DDB
seLects the device to which you want to issue a find-fiLe-mark command. The
FMARK caLL CDuses the MTU driver to read forward on the specified tape untiL
it finds a fiLe mark. Any errors resuLting from this caLL ~re indicated by
standard fiLe operation error messages.

6.4.4 FMARKR Arq

FMARKR causes the MTU drivpr to read in reverse on the tape untiL it finds a
fiLe mark. The caLL accepts a standard argument that represents a DDS on
which you have previousLy performed an FSPEC, an INIT, and an OPEN monitor
caLL. The DDS seLects the device to which you want to issue the FMARKR
command. Any resuLting error is indicated by standard fiLe operation error
messages.

6.4.5 TAPST Arg1,Arg2

This calL issues a read-tape-status command to the specified tape unit.
TAPST accepts two standard arguments. The first, Arg1, represents a DDS on
which you havp previousLy performed an FSPEC, an INIT, and an OPEN monitor
caL L. The DDB seLects the device l-Jhose status you want to return. The
returned status code appears in Arg2. The staus bits TAPST returns are as
foLLows:

BIT FUNCTION COMf·1ENTS

0 7-track Indicates that unit is in 7-t rac k mode.

1 NRl I mode Indicates that unit is in NRZI rpcording mode.

? End-of-tapp Indicates that end-of-tape was detected during
the previous command.

CHAPTER 7

TER~INAL SERVICE SYSTEM

The AMOS monitor has several calls which deliver data to and from both the
user terminal and other terminals connected to the system. A terminal is
defined as an ASCII character-oriented device which is capable of both
output and input. This is the formal definition and does not preclude the
use of output-only devices on terminal designated ports. Also, the system
includes software terminals known as "pseudo terminals," which can be used
to control jobs that are not actually associated with a hardware interface
on a designated port address. The calls listed here normally input from or
output to the terminal which is controlling the job that is executing the
call. Some caLls (as specified) will input from or output to another
terminal not connected to the current job or to a pseudo terminal
controlLing another job.

Programs which make use of the standard terminal service caLls that
communicate with the user terminaL can be run without modification in a job
controlled by a pseudo terminal. Keyboard input calls and terminal output
calls always go to the controlling terminal, regardless of which job they
are running in. Therefore, you need not be concerned with the physical port
address or attributes of the terminal which is controlling the job. The
monitor routines handle aLL this automaticaLLy.

7.1 TERMINOLOGY

Due to a hoLdover from older system terminoLogy, most terminaL output caLLs
reference the device name of "TTY," which used to define the teletype device
on systems that normalLy used teletypes as terminaLs. The input device of
the teLetype was then caLLed the keyboard, and the caLLs reference the
device name of "KBD." Thp.se are strictly mnemonics and do not necessari Ly
reflect the physicaL attributes of the terminals, which now are more
commonLy the higher speed video dispLay terminaLs.

TERMINAL SERVICE SYSTEM Page 7-2

7.2 THE TERMINAL LINE TABLE

Each terminal has associated with it a terminal line table which is a work
area in monitor memory set up to contain the parameters and work areas
associated with the control of the terminal device. Most of the items in
this terminal line table are for internal use only, and you need not be
concerned with them. The JOBGET Rx,JOBTRM call may be used to set an index
to the associated terminal line table, so that you can inspect or modify the
items with in.

7.2.1 The Terminal Status Word

NormalLy, you need to be concerned onLy with the terminaL status word, which
is the first word in the terminaL Line tabLe. This word has certain fLags
in it that you may modify to alter the operation of your terminal calLs.
The terminal status word has the foLLowing fLag positions defined:

Bit 0 - user sets to force imaqe mode input (see KBD caLL)
Bit 1 - user sets to suppress echoing of input characters
Bit 2 - user sets to aLLow escapes to be processed (as in EDIT)
Bit 4 - user sets to aLLow Lower-case input (disabLes conversion)
Bit 7 - internaL flag used to indicate output is in progress
Bit 9 - fLag used to indicate "hog" mode for terminaL (set by TRMDEF)
Bit 10 - user sets to indicate terminaL runs in LocaL mode (no echo)

The terminal status word is cleared each time the user program exits back to
monitor mode upon program completion, thereby restoring normal terminal
operation regardLess of program operation.

7.3 THE TERMINAL SERVICE CALLS

AMOS incLudes 17 monitor calLs to perform input and output between the
system and any of its connected terminaLs.

7.3.1 KBD {LabeL} - Fetch a Line of Data

The KBD call accepts onp fuLL Line of input from the user terminaL into a
monitor line buffer, then sets index R2 to the base of that buffer for the
user reference. Durinq the inputting of the Line, the user job is set into
the terminal input wait statp, thereby consuming no CPU time untiL the Line
is finished. ALL normaL Line editing features are active (rubout,
controL-U, tab, etc.) and a control-c input aborts the job unLess the user
has set up control-c trapping via the JOBICP item in the JCB for the job.
If you specify a label with the KBD call, the program automaticaLly branches
to that label. The Line is termin?ted when a carriage-return or a Line-feed
is entered. The monitor automaticaLLy appends a Line-feed to the
carriage-return, and a null bytp is set after the Line-feed character.

TERMINAL SERVICE SYSTEM Pagp. 7-3

If the echo-suppress fLag is set in the terminaL status word, normaL echoing
of the input characters is suppressed, such as when the password is being
entered for the LOG command. If the image-mode input fLag is set, the KBD
command has a different effect. No editing is performed and instead of one
Line being accepted, onLy one character is accepted and it is deLivered back
to you in register R1 instead of register R2 being set to the monitor Line
buffer. Image-mode input echoing is stiLL under controL of the
echo-suppress fLag as in normaL Line mode.

7.3.2 TTY - Output One Character

The TTY caLL outputs one character from register R1 to the controLLing
terminaL and then returns. Tabs are echoed as spaces up to the next
moduLo-8 carriage position, unLess the image-mode output fLag is set in the
terminaL status word. If the job is running under the controL of a command
fiLe, the character wiLL onLy be output to the terminaL if the output
suppress command is in the normaL state (:R revives it, :S silences it).

7.3.3 TIN - Get an Input Character

TIN gets the next input character from either the terminal input buffer or
from the command string if the job is controlled by a command fiLe. The
character is deLivered in R1. This caLL is normalLy only used within the
operating system itseLf and not by user programs.

7.3.4 TOUT - Output One Character

TOUT outputs one character to the controLling terminal of the job or to the
job which has this job attached (hy the address in the JOBATT item). This
caLL differs from the general TTY caLL in that the command file status is
not checked by the TOUT call. The TOUT calL, like the TIN calL, is normaLly
onLy used within the operating system itself.

7.3.5 TAB - Output One Tab

This convenience call outputs a single tab character to the user terminaL.
In effect, it is the same as the code sequence:

MOVI 11,R1
TTY

TERMINAL SERVICE SYSTEM Prtge 7-4

7.3.6 CRLF - Output a Carriage-Return I Line-Feed

This convenience call outputs a carriage-return and line-feed pair to the
user terminal. In effect, it is the same as the code seauence:

MOVI 15, R1
TTY
MOVI 12,R1
TTY

7.3.7 TTYI - Output a String of Characters

The TTYI call outputs a string of characters which follows the call itself
up to but not including a null byte. The call could be used as follows to
output two lines of data to the user terminal:

TTY!
ASCII ILINE 1 DATAl
BYTE 15
ASCII ILINE 2 DATAl
BYTE 15,0
EVEN

The TTYI call also automatically appenris a linp-feed to all carriage-returns
included in the string.

7.3.8 TTYL - Output a String of Characters Indexed

The TTYL call is similar to the TTY I call in that it outputs a string of
ASCII characters up to a null byte. The string of characters for the TTYL
call may be anywhere in memory and not in line with the call itself in the
program flow. TTYL takes one standard argument--the address of the message
to be output. It is therefore useful for outputting from a tabLe of
messages by setting an index to the specific messa~e within the table (per
some numeric director code), and then using that register as the argument to
the TTYL caLL. The TTYL call also appends a line-feed to each
carriage-return in the string.

7.3.9 PTYIN - Place Character in Input Buffer

The PTYIN caLL allows one job to force a character into the input buffer of
another job which is probably controlLed by a pseudo terminal. This call
takes two standard arguments. The first is the data byte to be sent to the
other job and the second argument is the address of the JCB of the job into
which the character is to be forced. PTYIN is the call through which the
FORCE operator command functions.

TERMINAL SERVICE SYSTEM Page 7-5

7.3.10 PTYOUT - Fetch Character from Output Buffer

The PTYOUT call allows one job to get a character from the terminal output
buffer of another job which is controlled by a ps~udo terminal. If no
output is availabLe from the specified job, the calling job is put to sLeep
until a character is availabLe. The PTYOUT caLL takes two standard
arguments. The first argument is the address of the byte which will receive
the data character, and the second argument is the address of the JCB from
which the character is to be taken.

7.3.11 TTYIN - Fetch Another Job's Input

The TTYIN call allows one job to get waiting input data from the terminal
input buffer of another job. This call has not yet been fully inplemented.

7.3.12 TTYOUT - PLace a Character in Another Job's Output

The TTYOUT call
output buffer.
implemented.

allows one
This caLL,

j~

Like
to put data into another job's terminal
the TTYIN caLL, is not yet fuLly

7.3.13 TRMICP - Process Input Character Within Interface Driver

The TRMICP call is executed from within a terminaL interface driver to
process one character which has just been received from the terminaL by the
hardware interface. R1 must contain the input character to be processed,
and R5 must index the terminaL definition tabLe entry for the specific
terminaL being serviced. TRMSER then takes the character and passes it to
the terminaL driver input routine for pre-processing if desired. When the
terminal driver passes it back to TRMSER, it is then edited for control
codes and other special characters and then added to the terminal input
buffer. All the pertinent flags are set automatically to indiciate actions
to be taken by the appLication program when it requests the input d~ta. If
the input character is a break character (line-feed), or if image mode is
active, the associated job is awakened to process the available data.

7.3.14 TRMOCP - Process Output Character Within Interface Driver

The TRMOCP call is executed from within a terminal interface driver to get
from TRMSER the next output character to be sent to the terminal. This is
usually in response to an interrupt from the interf?ce ~oard, indicating
that the prior character has been fuLLy output ~nd the board is ready to
transmit the next character. R5 must index the terminaL definition tabLe
entry for the specific terminaL being serviced, and R1 qets the next
avaiLabLe character upon return from TRMSER processing of the caLL. If

TERMINAL SERVICE SYSTEM Page 7-6

there is no more output aVniLabLe in the output buffer, R1 is set to -1 as a
fLag, and the associated job is awakened to fiLL the output buffer again.

7.3.1S TRMBFQ - Process Output Characters Within TerminaL Driver

The TRMRFQ caLL is a physicaL output caLL usuaLLy executed from within a
terminaL driver or a monitor routine. There are, however, times when it can
be used by an assembLy Langua~e appLication program. The TRMBFQ caLL
effectiveLy adds a buffer fuLL of data characters to the output buffering
system for a specific terminaL. It does this by Linking the buffer into the
dynamic output queue List used by TRMSER for this terminaL. When this caLL
is used, R2 must index the buffer to be queued, R3 must contain the number
of characters in the buffer, and RS must index the terminaL definition tabLe
entry for the specific terminaL. The TRMBFQ caLL performs the output
initiation function if the output system for the terminaL is currentLy idLe.

7.3.16 TSUF - Output Large Amounts of Data

The TBUF caLL is the normaL caLL for user programs to use for queueing up
large amounts of data into the terminaL output system of a terminal where
the single character caLLs are considered inefficient. It is a buffered
call in that it works through the two output buffers for the terminaL, as
opposed to going directLy into the output queue system. If you try to
output more data via the TBUF caLL than there is currentLy room for in the
output buffers, the user job is suspended while the output buffers are
unLoaded to the terminaL. Each time one of the output buffers is emptied,
the job is awakened and the TBUF caLL proceeds to fiLL that buffer. This
continues untiL the originaL amount of data is exhausted, at which time the
caLL returns to the user program. When the call is executed, R2 must index
the buffer to be output and R3 must contain the number of characters to be
output (similar to the TRMBFQ caLL). RS need not index the terminaL
definition tabLe entry since this is a user Level calL.

7.3.17 TCRT - CaLL SpeciaL TerminaL Driver Routines

The TCRT caLL is the Linkage into the special processing routine portion of
a terminaL driver. R1 usuaLLy contains a 2-byte code which is interpreted
by the terminaL driver routine as a speciaL function, such as cursor
positioning or speciaL editing action. The onLy action actuaLly performed
by the TCRT caLL within TRMSER is to Locate the terminal driver for the
attached terminal and caLL the driver controL routine within it. You must
refer to the actuaL driver Listing to determine the action performed
reLative to the code passed to it in R1.

TERMINAL SERVICE SYSTEM Page 7-7

7.3.17.1 Standard Functions - The TCRT call is most commonly used for
controllin~ such special CRT functions as cursor addressing and screen
clearing. To maintain compatibility between terminal drivers, Alpha Micro
has defined the following functions within the terminal drivers it supports.

7.3.17.1.1 Cursor Addressing - To perform cursor addressing, R1 is loaded
with a 2-byte argument defining the screen row and column to which the
cursor is to be moved. The high-order byte is loaded with the row, and the
low-order byte is loaded with the column. The uppermost-leftmost (Home)
position is column 1, row 1.

7.3.17.1.2 Other Functions - To perform other special CRT functions, the
high-order byte of ~1 should be loaded with 377 (octal). The low-order byte
is then loaded with one of the special function codes listed below.

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Not all terminal
terminals do not
features, Alpha
function codes.

Clear Screen and set normal intensity
Cursor Home (move to 1,1)
Cursor Return (move to column 1 without line-feed)
Cursor Up one row
Cursor Down one row
Cursor Left one column
Cursor Right one column
Lock Keyboard
Unlock Keyboard
Erase to End of Line
Erase to End of Screen
Enter Background Display Mode (reduced intensity)
Enter Foreground Display Mode (normal intensity)
Enable Protected Fields
Disable Protected Fields
Delete Line
Insert Line
DeLete Character
Insert Character
Read Cursor Address
Read Character at Current Cursor Address
Start Blinking Field
End Blinking Field
Start Line Drawing Mode (enable alternate character set)
End Line Drawing Mode (disable alternate character set)
Set Horizontal Position
Set Vertical Position
Set Terminal Attributes

drivers have all of the above functions, simply because all
have all of the functions. If your terminal has additional
Micro recommends starting at 100 (octal) when assigning

TERMINAL SERVICE SYSTEM Page 7-8

7.3.18 Message CaLLs

Three calLs have been defined in SYS.MAC as macros using the TTYI call.
These caLls are for the convenience of the programmer and to make the
program more readiLy understandabLe. They aLL tak~ a singLe argument which
is an ASCII message string to be output to the user terminal. Due to the
way that macro arguments are processed, if the message has l~adinq or
trailing spaces, or if it has imbedded commas, it must be enclosed in angle
brackets or part of it wilL be lost. The three calLs are:

TYPE msg
TYPESP msg
TYPECR msg

;Types the message on the user terminal as ;s
;Types the message and appends one space to it
;Types the message and appends a CRLF pair to it

The macros are defined in SYS.MAC as foLLows:

DEFINE TYPE MSG
TTYI
ASCII IMSGI
BYTE 0
EVEN
ENDM

DEFINE TYPESP MSG
TTYI
ASCII IMSG' I
BYTE 0
EVEN
ENDM

DEFINE TYPECR MSG
TTYI
ASCII IMSGI
BYTE 15,0
EVEN
ENDM

It shouLd be noted that the message may not contain any sLashes, since thes~
are used as deLimiters for the ASCII statement in the macros.

CHAPTER 8

CONVERSION MONITOR CALLS

8.1 NUMERIC CONVERSION CALLS

The AMOS monitor contains two caLLs which perform conversions from a singLe
binary word value to an ASCII formatted decimal or octal string. Options
for the conversion allow the string to be sent to the user terminal, to an
output file or to a buffer in memory. Options also allow control of the
resuL t format.

8.1.1 Calling Format

Both caLLs have the same general format and take two arguments, each of
which must be an expression that evaluates down to a byte value within the
specified range. The two calls are:

DCVT
OCVT

s i ze,flags
size, fl 8g S

;Convert binary number in R1 to decimnL
;Convert binary number in R1 to octal
; (hexadecimal if J.HEX is set for this job)

8.1.1.1 Size Byte - The size byte determines the number of digits in the
output result. A zero size specifies a floating format in which the number
of digits used is just enough to fully contain the result. A non-zero size
specifies a fixed number of digits for the result with leading zeros being
replnced by blanks. In either form, if the R1 value is zero, at least one
zero digit will be output as the result.

CONVERSION MONITOR CALLS Page 8-2

8.1.1.2 Flags - The flags byte contains six flags which control the
destination of the result string and also some other formatting options.
The following list gives the flag bit positions and the action taken when
the flag is set:

Bit 0 - disables leading zero blanking
Bit 1 - output s the result to the user terminal
Bit 2 - output s the rE'sult to the fi le wno~e DDS is indexed by R2
Bit 3 - puts result in memory at buffer indexed by R2 and updates R2
Bit 4 - adds one leading space to the result
Bit 5 - adds one trailing space to the result

Note that the maximum value which can be displayed using these calls is thE'
maximum value of a 16-bit word. All numbers are considE'red unsigned so the
largest decimal number is 65535, the largest octal number is 177777, and the
largest hex number is FFFF.

If the size byte is non-zero, the sense of the leading zero bLanking flag
described below is reversed. In other words, when the size byte is zero,
the conversion calls default to lE'ading zero blanking, with bit 0 turning
that blanking off. When the size byte is non-zero, the calls default to
leading zeroes, with bit 0 specifying that leading zeroes are to be bLanked.

The foLLowing examples may clarify things a bit. ALL exampLes assume the
value in R1 is 964 (decimaL>, and the letter "b" in the result field
indicates a blank.

DCVT 0,2 prints 964
DCVT 0,22 prints b964
DCVT 0,42 prints 964b
DCVT 5,2 pri nt s 009f.4
DCVT 5,3 prints bb964
DCVT 5,43 prints bb964b
DCVT 5,62 prints b00964b
DCVT 2,2 prints 64 <the 9 is tost)

8.2 RAD50 CONVERSION MONITOR CALLS

Radix-50 packing is used throughout the system where the packing of
filenames and other data entities lends itself. Radix-50 (RAD50) packing is
a system by which three ASCII characters may be packed into a single 16-bit
word using a special algorithm based on the value of octal 50. The
character set that m~y be packE'd RAD50 is limited in scope to the
alphanumeric characters, the period, the dollar sign, and the blank. The
following list gives the legal characters that may be packed RAD50 and their
equivalent octal codes:

CONVERSION MONITOR CALLS

Character

blank
A-Z
a-z

$

0-9

RAD50 code

o
1-32
1-32
33
34

36-47

There is no character for the RAD50 code 35.

8.2.1 RAD50 Packing Algorithm

Pag~ 8-3

The packing algorithm for a 3-character input to a 16-bit RAD50 result is:

1. The first character code is multiplied by 3100 octal (SOx50).

2. The second character code is multiplied by 50 and added to the
first.

3. The third character code is added to the above to form the result.

The unpacking algorithm merely reverses the above seauence to get the
triplet.

8.2.2 Packing and Unpackin9 Calls

There are two monitor calls which pprform the ~bove packing and unpacking
algorithms. Both calls use registers R1 and R2 as indexes to the components
and require no calling arguments.

8.2.2.1 PACK - Pack Three ASCII Characters into RAD50 - The triplet (3
ASCII characters) indexed by R2 is packed into RADSO form and the result is
left in the word indexed by R1. R1 is incremented by 2 to receive the next
result word for multiple packing. R? is left indexing the first character,
which was not incLuded in the packing of this triplet. The PACK call
terminates packing and forces bLank filL for any input which does not
contain three valid RAD50 char~cters. For the PACK r.all, a blank is
considered an illegaL input character and terminates packing.

CONVERSION MONITOR CALLS Page 8-4

8.2.2.2 UNPACK - Unpack Three RAD50 Characters into ASCII - The word in the
address indexed by R1 is unpacked, and the tripLet is Left in the three
bytes beginning with the byte currentLy indexed by R2. R1 is incremented by
2 for the next word, and R2 is incremented by 3 for the next tripLet resuLt.
Blanks are LegaL in unpacking and are pLaced into the resuLt if they are
decoded from the input word.

8.3 PRINTING CONVERSION CALLS

There are three calLs in the monitor which accept a system unit input and
convert the unit to standard printabLe form and then output it to the user
terminal. These calLs are used to print out fiLe specifications, fiLenames,
and project-programmer numbers. Each caLL takes one standard argument which
addresses the system unit to be converted and printed.

8.3.1 PFILE - Output a FiLespec From a DDB

The argument addresses a file DDB, and the PFILE caLL extracts the
parameters in the fiLe specification words. It then prints them on the user
terminaL in the standard format of dev:filnam.ext[p,pn].

8.3.2 PRNAM - Output a Filename

The argument addresses a 3-word filename.extension bLock (packed RAD50), and
the PRNAM caLL prints the converted resuLt on the user terminaL in the
standard format of fiLnam.ext.

8.3.3 PRPPN - Output a PPN

The argument addresses a 1-word project-programmer code, and the PRPPN caLL
prints the converted resuLt on the user terminaL in the standard format of
proj,prog. The p,pn ;s output in octaL, regardLess of the setting of J.HEX.

8.4 ALPHABETIC CONVERSION--LCS AND UCS

The AMOS monitor inLcudes two caLLs that switch between upper- and
Lower-case alphabetic characters. LCS converts one ch~racter in R1 to Lower
case. UCS converts one ch~racter in R1 to upper ca~e.

CHAPTER 9

INPUT LINE PROCESSING CALLS

When a program is executed by an operator command, register R2 is left
pointing to the first non-blank character on the command line which foLlows
the command name itself. Thp remainder of the line is normally interpreted
by the particular program and used to determine t~e files to be acted on,
the record number to be dumped, the devices to be accessed, etc. For
example, the MACRO call requires the name of the program and any switch
options to follow the MACRO command namp on the same line. The macro
assembly program then processes the program name and the s~itch options by
way of the R2 index which was left indexing the rest of the command Line.
This command line is ~ctuaLly the user's terminal input buffer.

In addition to the command input line, the KBD monitor calL also leaves R2
set to the input line buffer which contains the user input data. Also,
various translators and file processing programs may read in a line of data
and then set index R2 to the base of that Line for scanning. For this
reason, there exists a number of monitor caLLs which perform scanning and
conversion functions based on an input line which is indexed by R2. Some of
the calls merely test the character indexed by R2 for a specific condition
and return with flags set, based on the result of the test. In these
instances R2 is not modified. In caLLs which perform scan conversions, R2
is updated to point to the character which terminated the conversion. With
the exception of the FILNAM call, none of these caLls require any arguments.
Conversion results are aLways delivered back to the user in register R1.

9.1 ALF - TEST A CHARACTER FOR ALPHABETIC

The character indexed by R2 is tested for aLphabetic (A-Z; a-z); the Z-flag
is set if it is, and cleared if it is not. R2 is not changed.

INPUT LINE PROCESSING CALLS Page 9-2

9.2 NUM - TEST A CHARACTER FOR NUMERIC

The character indexed by R2 is tested for numeric (0-9); the Z-fLag is set
if it is, and cLeared if it is not. R2 is not changed.

9.3 TRM - TEST A CHARACTER FOR TERMINATOR

The character indexed by R2 is tested for a LegaL terminator defined as a
bLank, tab, comma, semicoLo~, carriage-return, Line-feed, or nuLL. The
Z-fLag ;s set if the character is a terminator, and cLeared if it is not.
R2 is not changed.

9.4 LIN - TEST A CHARACTER FOR LINE TERMINATOR

The character indexed by R2 is tested for a Le9aL end-of-Line defined as a
semicoLon, carriage-return, Line-feed, or nuLL. The Z-fLag is set if the
character is an end-of-Line character, and cLeared if it is not. R2 is not
changed.

9.5 BYP - BYPASS BLANKS

Index R2 is advanced past aLL characters which are bLanks or tabs and Left
indexing the first non-bLank, non-tab character it finds.

9.6 GTDEC - INPUT A DECIMAL NUMBER

Index R2 is used to process a decimaL number whose vaLue may be from 0 to
65535 in the input Line (leading zeros are legaL), and to deliver the
resuLtant binary value back in R1. The N-fLag is set if there is an error
(i.e., resuLt is greater than 65535). R2 is updated to poin1 to the
character foLlowing the decimaL input number. In the case of an error, R?
is Left indexing the digit that would have caused the overfLow past 65535
for double-word processing techniques.

9.7 GTOCT - INPUT AN OCTAL NUMBER

Index R? is used to process an octal number whose vaLue may be from 0 to
177777 in the input line (leading zeros are Legal), and to deliver the
resuLtant binary value back in R1. The N-flag is set if there is an error
(i.e., result is greater than 177777). R? is updated to point to the
character foLLowinp the octal. input number. If J.HEX is set for this job
(via the SET HEX command), this celL processes input in hexadecimaL instead
of octaL.

INPUT LINE PROCESSING CALLS Page 9-3

9.8 GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER

Index R2 is use~ to process a project-programmer number in the standard
format of proj,prog, and to deliver the resultant binary code b~ck in R1.
The format dictates that project numbers be octal numbers with a value
between 1 and 377, and programmer numbers be octal numbers with a value
between 0 and 377. The N-flag is set if the PPN was not in valid format.
R2 is updated to point to the character following the PPN.

9.9 FILNAM - INPUT A FILENAME

Index R2 is used to process a filename.extension input strin~, leaving the
RADSO packed 3-word resuLt in the three words starting with the address
specified as the first argument of the call. In format, this argument is a
standard monitor caLL argument. The second argument is a 1- to ~-character
extension to be used in case no expLicit extension is entered in the input
string. R2 is updated to index the terminating character. The Z-bit is set
if there was no filename to process (i.e., the first character was not a
LegaL RADSO character).

(

CHAPTER 10

MISCELLANEOUS MONITOR CALLS

This section deaLs with the monitor caLLs which do not fit into any of the
categories treated thus far.

10.1 EXIT - RETURN TO AMOS COMMAND LEVEL

This is the normaL means that a pro~ram uses to terminnte processing and
return to monitor command mode. The EXIT caLL takes no arguments. The
monitor, upon executing the ~XIT caLL, deLetes aLL temporary memory moduLes
in the user partition and rpsets any par~metprs that are program dependent
such as JOBICP, JOBBPT, etc. ALL assi~nec devices are aLso reLeased at this
time. The user terminaL is then pLaced in the monitor command mode, ready
to process another operator command.

10.2 CTRLC - BRANCH ON CONTROL-C

Whenever a controL-C is pntered on a terminaL kpyboard (usuaLLy to abort a
program), no action takes pL~ce immediateLy, but rather a fLag is set in the
JCB status word which must be tested Later by the program. The CTRLC caLL
is used within an appLication program to check the status of the controL-C
fLag (in the JCB status word) and branch to ~ specific address if the fLag
is set. This caLL is a convenience since the user couLd perform the same
task with a few instructions by Locating his own JCB status word and
checking the J.CCC fLaq within it. The format of this caLL is:

CTRLC routine-address

where routine-address is the address to branch to within the program if the
control-C flag is set.

The CTRLC calL does not reset the J.CCC flag but mereLy indicates that it is
set (this alLows nested routines to unwind themseLves correctLy). The user
program must then reset the flag explicitly by cLearing it in the JCB status

MISCELLANEOUS MONITOR CALLS Page 10-2

word or implicitly by performing the EXIT call, which kills the program and
returns to monitor mode, clearinp J.CCC.

10.3 JLOCK, JUNLOK - PREVENT CONTEXT SWITCHING

The JLOCK call prevents context switches from occurring and allows the
current user to run. JUNLOK reverses the effect of JLOC~.

10.4 RQST - REQUEST CONTROL OF A SEMAPHORE

RO points to a 2-word semaphore which may conventionally be associated with
any type of resource (disk, buffer, queue block, etc.). When a job requires
access to a resource, it should RQST the semaphore associated with that
resource. RQST decrements the semaphore count (representing the number of
availabLe resources) by 1. If the resulting count is greater than or equal
to 0, the RQST returns, aLlowing access to that resource. If the difference
is less than 0, the job is placed in a wait chain until the resource is
available.

To illustrate, suppose a job needs to access one of 20 available queue
blocks. A semaphore with an initiaL value of 20 (to represent the available
queue bLocks) could be set up and accessed prior to any attempts to aLlocate
a queue bLock. A RQST calL decrements the count from 20 to 19, confirms
that 19 is greater than or equaL to 0, then returns control of the job so it
can get a queue block. If none of the 20 queue blocks were availabLe (i.e.,
the semaphore count < 0), the job would be placed in a wait state until a
queue block was identifTed as freed via a RLSE call (see section 10.5
below).

10.5 RLSE - RELEASE CONTROL OF A SEMAPHORE

If, upon execution of the RQST caLL (see section 10.4 for explanation), the
semaphore count is less than or equal to 0 (i.e., none of the resources
requested is available), the requesting job is put to sleep in a wait chain.
When one job is finished with one of those resources, a RLSE calL on the
semaphore associated with that resource increments the count by 1 and
determines if the resuLt is less than or equaL to O. If it is, the next job
in the wait chain is awakened and allowed to finish the RQST.

For example, if none of 20 queue blocks is currently availabLe, the count is
Less than or equaL to O--Let's say it's O. Before a job tries to get a
queue bLock, a RQST on the semaphore decrements the count from 0 to -1 and
pLaces the job in a wait chain. After a job frees n queue block, it uses
the RLSE caLL on the semaphore associated with "QueuE" blocks." This caLL
increments the semaphore count by 1, resuLting in 0, and wakes the first job
in the wait chain, which alLows it to continue on and alLocatE" a Queue
bLock. The foLLowing diagram iLlustrates the semaphore:

MISCELLANEOUS MONITOR CALLS Page 10-3

SEMAPHORE
RQ -----> ---------------

count I

I wait chai n I

10.6 PCALL - INVOKE PROGRAM AS SUBROUTINE

PCALL is similar to the standard machine instruction caLL (JSR), except
return is not done via the RTN instruction but is accompLished via the EXIT
supervisor caLL. The format is:

PCALL subroutine-adrlr~ss

where the subroutine andress is the address of the program you wish to caLL.

10.7 AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE

When AMOS is used as a monitor caLL, the character string pointed to by R2
is treated as a monitor command Line, and the AMOS command in this command
Line is executed without leaving the current program.

APPENDIX A

DISK STRUCTURE FORMAT

The AMOS monitor supports a flexibl~ disk file system which relieves you of
the task of keeping track of files, links and record counts. The structure
of the standard disk format used in the AMOS system is describ~d her~ for
those programmers who wish to do some disk file manipulation or system
software programming.

A.1 PHYSICAL RECORD FORMAT

The logical record size for all disks used within the AMOS file structure,
regardless of type, is 512 bytes. For efficiency, the hard-disk structures
(such as the AM-500 or Trident subsystems), and the AMS floppy format all
define the physical record size to be this 512-byte logical record size. To
maintain compatibiLity with oth~r systems, the standvrd IBM-compatible
floppy disk format is somewhat different and will be expained in more detail
here.

The standard IBM-compatible floppy disk has 2002 128-byte physical records
on 77 tracks, each track having 26 sectors numbered 1 through 26. The AMOS
system uses a logical record size of 512 bytes (256 words) for each record,
so the actual record is made up of four standard size 128-byte records on
the floppy disk itself. The disk driver routine is responsible for
translating the AMOS record numb~r (0-499) to the proper four physical
records on the disk. There are only 500 records of 512 bytes each, as far
as the programmer is concerned, and the last two 128-byte records on the
floppy disk are lost to his use.

The driver translates the AMOS record number into a starting record number,
which is four times as great. In addition, a physical sector interleave
factor is used so that a 512-byte record requires only one rotation of the
disk instead of four, which would be the case if an attempt was made to
access four physically contiguous sectors on the floppy disk. The
interleave factor .il. 5A . meaning that there are four sectors between each
(b~icallj ~ontlgu6us pair of sectors.

DISK STRUCTURE FORMAT Page A-2

A.2 DISK RECORD TYPES

There ar~ six different record types in use in the AMOS system, categorized
by their use in th~ lo~ical proc~ssing of fiLes. Each record is 512 bytes
long, but their internaL structure differs due to different usage in the
system. The six r~cord types are:

1. Disk ID record
2. Bitmap records
3. Master File Directory record (MFD)
4. User directory records
5. Sequential file d~ta records
6. Contiguous file data records

The following three record types take care of records 0-2, which are the
same on all disks. Initializing the disk by using the "I" command in the
SYSACT program writes out record 1 (empty MFD of alL zeros) and record 2
(bitmap with records 0-2 alLocated), loqicalLy clearing the disk of aLL
users and fiLes and making eLL remaining records (3-499) availabLe. These
records are then allocoted as either user directory records or fiLe data
records.

A.2.1 The Disk ID Record

The Disk 1D record is always record 0 and is not currently used by the AMOS
system. It has be~n reserved for use by user routines which may want to
store disk identification information in it. It is permanently aLLocated,
so it will not accidently be used as a data record by any system routine.
Since this record is reserved for the disk ID, you should not attempt to use
it for other purposes.

A.?.2 The Bitmap

The bitmAp is one or more records which aLways begin with record 2 and
extend into as many sequential records as necessary to represent the entire
disk. Each word in the bitmap is capabLe of representinq the state of 16
logical records with onp bit being used for each record. The bit is set if
the record is in use and cleared if it is free. The last two words of every
bitmap are a double-word hash total used to maintain bitmap integrity during
processing. Any remaining words in the lAst bitmap record are unused. The
bitmap itseLf is permanently allocated but contains no links to other system
disk records. If you destroy the bitmap, you can run the DSKANA program to
recover it.

DISK STRUCTURE FORMAT Page A-3

A.2.3 The Master File Directory

The master file directory record is always record 1 and forms the root of
the fil~ structure tre~. It contains one entry of four words for each user
PPN which is allocated to this disk by the SYSACT program. A maximum of 63
users may be allocated on ?ny one disk, since only onp. MFD record is
avaiLabl~.

A.2.4 The User File Dir~ctory

User directory rpcords contain up to 42 entries of six words each to
describe uspr files in the corresponding PPN. The first word of each
directory record is a link word to the next directory record in the event
that more than 42 files are allocated in the current user area. The finaL
directory record has a zpro link word indicating that no more directory
records follow.

A.2.5 SequentiaL FiLe Data Records

Spquential file data records have a link word and 255 data words. The link
word is the record number of the next record in the file. A zero link word
indicates this is the last record in the file. The last record in the file
may have anywhere from 0 to 509 active data bytes in its data area. The
directory record item contains this number. Sequential files are normally
processed as one long string of bytes from start to finish.

A.2.6 Contiguous File Data Records

Cont i guous
fi les must
belonging
sequential
Contiguous
located as

file data records have 256 data words and no links. Contiguous
be aLlocated as a block of records with no intervening records
to other fiLes. They must be allocated b~fore their use while
files are allocated one record at a time as they are required.
fil~s allow random access processing, since any record may be

a direct offset relative to the base record.

A.3 FILE STRUCTURE

The fiLe structure is depicted in fiqure A-1 and resembLes a tree with the
MFD record as its root. The MFD rp.cord has one item for each aLLocated user
on this disk. Each MFD item then contains the record number of the first
user directory record for th~t PPN number. The user directory record has
one item for each data fiLe in this user's area. Each directory item then
contains the record number of the first data record in he fiLe. SequentiaL

:Te.

DISK STRUCTURE FORMAT P2qe A-4

20,20

ETC.

DIRECTDRY
RECDRD FIRST DIRECTDRY
FDR [1, 2J RECDRD FDR C1, 4]

~ __ -L __ ~ ~ __ -L __ ~

LINK

CD
(ND FILES)

MAP. PRG -TO MAP. PRG
FILE

BASIC. PRG -TO BASIC.PRG
FILE

RUN. PRG -TD RUN.PRG
FILE

SECDND ETC.
DIRECTDRY
RECDRD FOR

(1,4]

LINK LINK

EDIT. PRG FIRST SECDND
RECORD DF RECDRD OF

DIR. PRG EDIT.PRG EDIT.PRG
FILE FILE

SYSTEM.MON

+
ETC.

TO SYSTEM. MON
FILE

LINK

FIRST SECOND
RECORD DF RECORD DF

DIR. PRG DIR. PRG
FILE

-ETC.
I

I

DIRECTDRY RECDRD
FOR (20,20] __ ""';L-_......,

SNO.BAS -TO SND. BAS
FILE

REC.BAS -TO REC. BAS
FILE

REC.RUN -TO REC.RUN
FILE

ETC.

-TD REST
OF EDIT. PRG

THIRD
RECORD OF

EDIT. PRG
FILE

- TO REST
OF DIR. PRG

THIRD
RECDRD OF

DIR. PRG
FILE

~,--------------------~~------------------~)
FILE DATA RECDRDS

Disk File Structure

Fig A-1

DISK STRUCTURE FORMAT Page A-S

fiLes then chain through th~ data records by Link words as shown in the
diagr~m. The two fiLes th8t are partiaLLy rl~picted are EDIT.PRG ~nd DIR.PRG
in user area [1,4] which happens to he the system program area. Contiguous
fiLes have no Link words and must occupy physicaLly adjacent records
beginning with the first record as addressed in the directory item.
Contiguous fiLes are not depict~d in th~ dia9ram since they are so
straightforward in organization.

A.4 MFD ITEM FORMAT

Each MFD item is four words long and contains the PPN specification, user
directory Link, and password. The format of the item is:

Word 1 - user PPN (proj and proq are ~ach one byte)
Word 2 - record number of first user directory record
Words 3-4 - password packed RADSO (up to 6 characters)

Word 2 is zero if no files have been aLlocated to this user yet, m~aning no
directory records hAve yet been aLLocated. Words 3-4 are zero if no
password is required to gain access to this user account when logging on via
the LOG command.

MFD items are added, deLeted, and changed by the SYSACT program.

A.S UFO ITEM FORMAT

Each user directory item is six words long and contains information about
the data fiLe which it defines. The format of the item is:

Words 1-3 - fiLename.extension of the fiLe packed RAD50
Word 4 - number of data records in this fiLe
Word 5 - number of active data bytes in last record
Word 6 - record number of first data record in file

Word 1 is -1 (octaL 177777) if this fiLe has been erased and the directory
item is avaiLabLe for another file definition. Word 1 is zero, to mark the
logical end of the user directory. The byte count in word 5 is negative if
this is a contiguous fiLe. It aLso represents the neg~tive active byte
count of the fiLe if the contiguous fiLe has been opened for output and
writt~n into sequentiaLLy.

APPENDIX e

SYSTEM COMMUNICATION AREA

One area in monitor memory starting at location 100 (octal) is called the
system communication area. It is defined mnemonically in SYS.MAC and
contains specific parameters that deal directly with singular system
resources and root addresses. They are briefly d~fined here for those users
who wish to carefully reference them; but such action should be rare and
must be undertaken with great caution. All referenr.es to these parameters
should be made symbolically in the absolute addressing mode. For example,
the instruction MOV @#JOBTBL,RO should be used to set the bas~ of the user
job table into index register RO.

B.1 SYSTEM - SYSTEM ATTRIBUTES WORD

This word contains system attribute and status flags. Currently it is only
used to indicate that the system has been properly loaded when bit 0 is set
on.

B.2 DEVTBL - ADDRESS OF THE DEVICE TABLE

Set up by the DEVTBL program in the system initialization command file, this
word contains the absolute address of the device table in monitor memory.

B.3 DDBCHN - ACTIVE ODB CHAIN

This is the base of the active DDB chain for interrupt driven routines. It
is set up and altered by the file service routines as new 1/0 DDB's are
queued for transfer requests, and goes to zero ~ach time there are no
requests pending. It is not used for non-interrupt driven d~vices.

SYSTEM COMMUNICATION AREA Page B-2

B.4 MEMBAS & MEMEND - USER MEMORY POINTERS

These two words define the beginnin~ and end of the compLete user memory
area. MEMBAS is the address of the first word following the complete
resident monitor, including the system memory area for user resident
programs. MEMEND is the address of the last word in the total physicaLLy
contiguous RAM mp.mory in the machine. It is set up by the INITIA program
when the monitor first starts up, by a memory scan technique which Locates
the Last avaiLable 1K bnnk. If memory management is active, MEMEND can only
reflect the end of switchabLe m~mory within bank 0, and its use in the
system diminishes.

8.5 SYSBAS - BASE OF SYSTEM MEMORY

This is the address of the system memory area which is used to contain any
user programs set up by the SYSTEM command in the system initiaLization
command filf'. It is zero if no system memory area exists.

B.6 JOBTBL - ADDRESS OF THE JOB TABLE

This is the address of the user job tabLe which contains one JCB entry for
each user aLLocated via the JOB command in the system initialization command
file. For a complete description of the job tabLe and JCB entries, refer to
Chapter 2, "JOB SCHEDULING AND CONTROL SYSTEM."

B.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB

This word always contains the address
currentLy running and has controL
always points to your own JCB as long
are referencing this word you must
the job scheduLer in the time-sharing

B.8 JOBESZ - JOB TABLE ENTRY SIZE

of the JCB for the job that is
of the cPU. For the user proqram, it

as you are runnin~. Obviously if you
be running. JOBCUR is updated only by
monitor.

This word is set up when the lI1onitor is huilt and contains the size in bytes
of the JCB entry in the job table. This way, when the JCB item expands, the
programs which scan the job table wiLL not have to be reassembled since they
get the JCB size dynamically from JOBESZ. This includes routines within the
monitor itself.

SYSTEM COMMUNICATION AREA Page B-3

B.9 TIME - THE TIME OF DAY

THIS 2-word fieLd is incremented each tim~ the line clock interrupts. It
represents the current time of day, stored as the number of ticks since
midnight. You can reference this param~ter to keep track of the time it
takes to do something on the machine. Remember, TIME is used to count cLock
ticks and not seconds or millis~conds. To caLcuLate the actual time in
seconds, divide the elapsed time in ticks by the clock frequency which is
stored in the CLKFRQ constant described further on. This, of course,
assumes that the CLKFRQ command has been used in the system initiaLization
command file to properLy set up the constant for your particuLar frequency
(50 Hz overseas, remember?).

8.10 DATE - THE SYSTEM DATE

This 2-word fieLd is used by various date routines to store the current date
in som~ specific format. Its use depends upon the appLications which are
defining the format. The DATE fieLd is not accessed or aLtered by the
system monitor itself.

8.11 HLDTIM - THE HEAD LOAD TIMER

This 2-word area controls the head-load timinq for th~ AM-200 floppy disk
system wh~n used with the Persci FLoppy Disk Drive. The s~cond word (at
HLDTIM+2) is set up by the HEDLOD program, in the system initialization
command file, to the number of cLock ticks desired to wait before unLoading
the disk heads during periods of inactivity. Each time the head is Loaded
or another disk transfer is initiated, the count in the second word is
transferred to the first word. Each time the cLock interrupts, the count in
the first word is decremented, and if it ever gets to zero the head is
unLoaded.

8.12 CLKFRQ - LINE CLOCK FREQUENCY

This word is set up by the CLKFRQ command in the system initialization
command file to contain thp frequency at which the line cLock is running.
It is used by routines which compute ~Lapsed time by counting the cLock
ticks in the TIME constant. It is normally set to 60 for systems in North
American countries and to 50 for systems running overseas.

Remember that CLKFRQ specifes onLy the locaL Line frequency. Changinq
CLKFRQ has no effect on the execution speed of the computer.

SYSTEM COMMUNICATION AREA Page B-4

B.13 SPXSAV - STACK POINTER SAVE LOCATION

This word is used by the clock interrupt routine for saving the user stack
pointer just prior to switching to the internal stack.

B.14 SPXINT - INTERNAL STACK

This is the address of the internal work stack used for processing clock
interrupts. It is set up by the initial load routine and used by the clock
interrupt processor.

B.15 LPTQUE - LINE PRINTER SPOOLER QUEUE

This is the dynamic link address to the base of the line printer spooler
queue. The format of th~ spooler queue is subject to frequent change, so it
is not detailed here.

B.16 TRMDFC - BASE OF THE TERMINAL DEFINITION TABLE

This is the link to the bas~ of the terminal d~finition table. There is one
entry in this table for each terminal defined ~t system startup by a TRMDEF
statement in the SYSTEM.INI file.

B.17 TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER

This is
system.

the link to the first terminal interface driver defined in the
Each driver then Links to the next one in the chain.

B.18 TRMTDC - ADDRESS OF FIRST TERMINAL DRIVER

This is the link to the first terminal driver defined in the system. Each
driver then Links to the next one in th~ chain.

8.19 TRMSCN - THE NON-INTERRUPT TERMINAL QUEUE

TRMTSC is the link to the chain of queue blocks for all terminals which are
defined as non-interrupt driven and which require terminaL scan s~rvice ~ach
clock tick.

SYSTEM COMMUNICATION AREA Page B-5

8.20 CLKQUE - THE CLOCK QUEUE

CLKQUE is the l ink to the clock qU~lIe which gets scannE'd every clock
interrupt. This queue has some entries that remain constant and some that
are continuously added and deleted (such as SLEEP commClnd queue blocks).
CLKQUE is nctualLy the base E'ntry in the queue chain and therefore is two
words in size.

8.21 SCNQUE - THE IDLE SCAN QUEUE

This is the link to that point within thE' clock Queue chain which defines
the idLe scan queue or that portion of the cLock queue which wilL be
continuousLy scanned when the system is idle. SCNQUE is actuaLLy the base
entry in the queue chain and therefore is two words in size.

8.22 RUNQUE - THE JOB SCHEDULING QUEUE

This 5-word block forms the bClse and end entries for the job scheduLing and
run queue, along with the necessary control information. Its format is
unimportant to thE' user, and you should never aLter it.

8.23 DRVTRK - THE DRIVE/TRACK TABLE

DRVTRK is a 4-byte block that stores head track positioning information for
floppy disks used in the system. It is used only by the head unload and
head positioning routines in various floppy disk drivers.

B.24 MEMDEF & MEMBNK - MEMORY MANAGEMENT CONTROL

These two words are used by the memory management system (when active) to
store the base of the memory bank definition table and the currentLy active
bank index. They are explained in detail in Chapter 3, "MEMORY CONTROL
SYSTEM CALLS."

B.25 ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER

This word contains the base address of the systE'm disk driver within the
monitor. It is used by MONGEN to overlay the disk driver with another one
when changing the resident disk type.

SYSTEM COMMUNICATION AREA Page 8-6

8.26 QFREE - QUEUE SYSTEM CONTROL

QFREE consists of two words, the first containing the numb~r of queue bLocks
currentLy available, the second pointing to the first avaiLabLe queue bLock.
Queue bLocks are aLlocated and deaLLocated by getting and returning them
from the front of thE' List controLLed by this address, automaticaLLy
incrementing or dp.cremE'nting the free count in the process. The operation
of the queue system is more fuLLy expLained in Chapter 5, "MONITOR QUEUE
SYSTEM CALLS."

APPENDIX C

ALPHABETrr. LISTING OF AMOS MONITOR CALLS

The foLLowing is a quick rpferencp. to ~Ll PM-100 monitor calls:

ALF
AMOS
ASSIGN
BNKSWP
BYP
CHGMEM
CLOSE
CRLF
CTRLC
nCVT
DEASGN
DELETE
DELMEM
DSKALC
DSKBMR
DSKBMW
DSKCTG
DSKDEA
DSKDRL
DSKDRU
EXIT
FETCH
FILNAM
FMARK
FMARKR
FSPEC
GETMEM
GTDEC
GTOCT
GTPPN
HTIM
INIT
INPUT
JLOCK
JORGET

tests the char?cter indexed by R7 for elphabetic
executes AMOS comm&nd without exiting current program
assigns a non-sharable device to a job
changes banks when running under memory management system
bypasses all spaces and tabs in the strinq indexed by R2
changes the size of a user memory module
closes a logical dataset
prints a carriaqe-return line-feed pair on the user terminal
checks for a control-c pending
conv~rts a bin~ry vaLue to decimal and prints it on the user terminal
deassigns a non-sharable device from a job
deletes a file from a file-structured device
deletes a user memory module from his partition
allocates next available record on disk and returns block number
reads disk bitmap and sets re-entrant lock for user modification
rewrites disk bitmap after user modification
aLlocates a contiguous file for random processing
deallocates a record on disk ann makes it available for use again
sets re-entrant directory lock for a specific user's directory
clears re-entrnnt directory lock for a specific user's directory
exits from user program and returns to monitor command mode
fetches a module from disk into user memory unless already in memory
processes a filename specification indexed by R2 into RADSO format
find file mark on specified magnetic tape unit
read in reverse to find file mark on specified maqnetic tape unit
processes a complete file specification indexed by R2 and sets up DDB
allocates a user memory module in his partition
converts a decimal number indexed by R2 into binary and returns it in R1
converts an octal number indexed by R2 into binary and returns it in R1
converts a p,pn format indexed by R2 into binary and returns it in R1
sets up the diskette hean unload timer function
initializes a dataset driver block (ODB) for I/O processing
performs a logical record input I/O function on an open dataset
prevents context switches and aLLows current user to run
retrieves a job controL block item for the current job

ALPHABETIC LISTING OF AMOS MONITOR CALLS Page C-2

JOBIDX
JOBSET
JRUN
JUNLOK
JWAIT
JWAITC
KBD
LCS
LIN
LOCK
LOOKUP
NUM
OCVT
OPEN
OPENA
OPEN!
OPENO
OPENR
OUTPUT
PACK
PCALL
PFILE
PRNAM
PRPPN
PTYIN
PTYOUT
QADD
QGET
QINS
QRET
READ
RENAME
REWIND
RLSE
RQST
SCAN
SLEEP
SRCH
TAB
TAPST
TBUF
TCRT
TIN
TOUT
TRM
TRMBFQ
TRMICP
TRMOCP
TTY
TTYI
TTYIN
TTYL
TTYOUT

set an index to a job controL bLock item for the current job
sets data into a job controL bLock item for the current job
restorp.s a waiting job to the run request state
enabLes context switcres (reverses effect of JLOCK)
sets an active job into the wait state
sets your job into the wait state
accep~nput from user terminaL keyboard (charactAr or Line mode)
converts one character in R1 to Low~r c~se

tests the character indexed by R2 for vaLid end-of-Line character
Locks the processor ag~inst interrupts (performs IDS instruction)
Looks for a specific fiLe on disk and returns information about it
tests the character indexed by R2 for numeric
converts a binary vaLue to octaL and prints it on the user terminaL
generaL form of the 1/0 LogicaL dataset open caLLs
opens a LogicaL dataset for appending
opens a LogicaL dataset for input
opens a LogicaL dataset for output
opens a LogicaL dataset for random access
performs a LogicaL record output 1/0 function on an open dataset
packs an ASCII tripLet into its RADSO code
invokes program as subroutine
prints a compLete fiLe specification on user terminaL from a DDB
prints a fiLename specification on user terminaL from its packed format
prints a p,pn specification on user terminaL from its packed format
forces one character into another job's terminaL input buffer
retrieves one character from another job's terminaL output buffer
adds a queue bLock to the end of a aueue List
gets a queue bLock from the free List and cLears it for use
inserts a queue bLock into a queue List at a defined point
removes? queue bLock from a queue List and returns it to the free List
performs a physicaL record read 1/0 function on a dataset
renames a fiLe on a fiLe-structured device
rewind magnetic tape on specified magnetic tape unit
reLeases controL of a semaphore and aLLows waiting job to access source
requests control of a semaphore to access source or to wait in wait chain
forces a singLe scan of the idLe scanner queue (SCNQUE)
puts the user job to sLpep for a specified number of Line cLock ticks
searches for a named memory moduLe and returns its address
sends a tab character to the user terminaL
read tape status of specified magnetic tape unit
queues up a variabLe Length data buffer for output to a terminal
executes the speciaL function CRT routine in the active terminaL driver
reads one character from the user terminaL input buffer
sends one character to the user terminal output buffer
tests the character indexed by R2 for a valid termination character
adds a data buffer to the active output queue of a terminaL
processes one input character (used within terminaL drivers)
processes one output character (used within terminal drivers)
outputs one character to the user terminal
outputs an in-Line message to the user terminal
retrieves one character from any job's terminaL input buffer
outputs a message to the user terminal
forces one character into any job's output buffer

ALPHABETIC LISTING OF AMOS MONITOR CALLS Page C-3

TYPE
TYPECR
TYPESP
UCS
UNLOCK
UNPACK
USRBAS
US REND
USRFRE
WAKE
WRITE
WRTFIV:

typ~s an ASCII message on the user terminaL
types an ASCII message on the user terminaL with appended CRLF pair
types an ASCII message on the user terminaL with one appended space
converts one character in R1 to upper case
unLocks the processor for interrupts (perform~ lEN instruction)
unpacks a RAD50 code word into its equivaLent ASCII tripLet
returns the address of the current user's memory partition base
returns the address of the current user's memory partition end
returns the address of the current user's free memory area
wakes a job out of sLeep state
performs a physicaL record write I/O function on a dataset
write a fiLe mark to specified magnetic tape unit

AMOS MONITOR CALLS MANUAL

ALF • • • • • • • • • •
Alphabetic conversion.
AM-100
AM-100fT
AM-700
AMOS
A.SSIGN

Bi tmap Format ••••••••••
Bitmaps ••••••
BNKSWP
BYP • • •

CHGMEM
CLKFRQ
CLKQUE
Clock Frequency ••
CLOSE • • • • •
Contiguous Fi les
Cont ro l-C •
Convenience Macros
CRLF
CTRLC • • •
Cursor Addressing •

DATE
DCVT
DDB • • • • • •

Buffer Address
Buffer Index
Buffers ••••••••••
Call Level •••• • •••
Dev ice Code •
Drive ••••
Driver Work Area
Error Code
Error Hand l i nq
Extension • • ••••
Filename ••••••
Fl ag s • •

Index

9-1
8-4
3-13
3-13
3-10
10-3
6-15

6-17
A-2
3-12
9-2

3-(,
B-3
8-5
B-3
6-11
A-3
10-1
7-8
7-4
10-1
7-6

B-3
8-1
6-1
6-4
6-4
6-6
6-5
6-5
6-5
6-6
6-2
6-7
6-6
6-6
6-4

Page Index-1

AMOS MONITOR CALLS MANUAL

JCB Address ••
Job Priority ••••
Open Code • • • • • •
PPN • • • • • •
QUE'ue Chain Link
Record Number •
Record Size •••••

DDB Format
DDBCHN
DEASGN ••••
Decimal Input
Decimal Output
DELETE
DELMEM •••••••••••••
DEVT8L ••• • • • • • • • • • •
DEVTBL program •••••••••
Disk File Structure. • •••
Disk ID Record ••••
Disk Record TypE's. • •••
Disk Service Monitor Calls
Disk Structure ••••
DSKALC •••••••••.•••
DSKBMR •••.•••••••••
DSKBMW
DSKCTG
DSKDEA
DSKDRL
DSKDRU

EXIT

FETCH · Fl ag s · File marks
File Service
File Service

· · ·
· · ·

Monitor
System

File St ructure · · Filenames · · · · · Filespecs · · · · · FILNAM · · · FMARK · · · · · · · FMARKR · · · · FORCE command · · · FSPEC · · · ·
GETMEM · · · GTDEC · · GTOCT · GTPPN · · ·

· · ·
· · ·

· · Ca lls

· · ·
· · ·
· · · ·
· · ·
· ·
·
· · ·
· · ·
· ·

Head Load Time •••••
HEDLOD program •••••
Hexadecimal Input ••••

,
,~

· · · ·
· ·
· · · ·

· · · ·

· · · · · · · ·
· · · ·
· · · ·
· · · ·

6-5
6-5
6-6
6-6
6-5
6-5
6-4
6-2
8-1
6-16
9-2
8-1
6-15
3-6
8-1
B-1
A-3
A-2
A-2
6-16
A-1
6-18
6-19
6-19
6-18
6-19
6-19
6-2C

10-1

4-1
4-2
6-21
6-8
6-1
A-3
8-4,
R-4
9-3
6-21
6-21
7-4
6-8

3-6,
9-2
9-2
9-3

8-3
8-3
9-2

Page Index-2

9-3

6-6

AMOS MONITOR CALLS MANUAL Page IndE'x-3

Hex .3dF!c i rna L Output 8-1
HLDTIM B-3

INIT 6-6, 6-9
INPUT · 6-13
Input Line Processing Ca L L s · 9-1
IntE'rface Drivers · · · · · 7-5, 8-4

JCB . · · · · · · · · 2-1, B-?
C;" •. 1 ze · · · · · · · · · · · · · B-2

JCB Entries
JOBBAS · · · · · · · · · 2-5
JOBBNK · · · · · · · · 2-7, 3-11
J08EPT · · · · · · · · · · · · 2-7
JOBBRK · · · · 2-8
JOBCMS · · · · · · · · · · 2-6
JOBCMZ · · · · 2-6
JOBCUR · · · · 2-1
JORDEV · · · · · · · 2-7
JOBDRV 2-8
JOBDYS · · · · · · · · · · · · 2-9
JOBFRC · · · · · · 2-7
JOBFPE · · · · · · · · · · 7-9
JOBNM1 · · · · 2-5
JOBPRG · · · · · 2-6
JOBPRV · · · · · · · · · · · · 2-6
JOBRNQ · · · · · · · · · · 2-9
JOBSIZ · · · · 2-5
JOBSPR · · · · · · 2-5
JOBSTK · · · · · · · · · · · · 2-9
JOBSTS · · · · · · · · · · 2-4
JOBTRM · · · · · · · · 2-8
JOBTYP · · · · · · · · · · 2-7
JOEUSR · · · · 2-6

JLOCK · · · · · · · · 10-2
Job Contro L BLock · · · · · 2-1, B-2

Si ze · · · · · · · · B-2
Job Table · B-2
JOBBAS · · · · · · · · 2-5
JOBBNK · · · · · · · · · · · 2-7, 3-11
J08BPT · · · · · · · · · · 2-7
JOBBRK · · · · 2-8
JOBCMS · · · · 2-6
JOBCMZ · · · · 2-6
JOBCUR · · · · · · 2-1, B-2
JOBDEV · · · · 2-7
JORDRV 2-8
J08DYS · · · · · · · · 2-9
JOBERC · · · · · 2-7
J OBESZ · · · · · B-2
JOBFPE · · · · · · · · 2-9
JOBGET · · · · · · · · · · 2-1, 2-3
JOAIDX · · · · · · 2-1, 2-3

AMOS ftlONITOR CALLS MANUAL

JOBNAM · · · · JOBPRG · · · · · · · · · · · JOBPRV · · · · · · · · · · · JOBRNQ · · · · · · · · · · · JOBSET · · · · JOBSIZ · · · · JOBSPR
JOBSTK · · · · JOBSTS · · JOBTBL · · · · JOBTRM
JOBTYP · · · · · · · · JOBUSR · · · · · · · · · JRUN · · · · · · · JUNLOK · · · · · · · · · JWAIT . · · · · JWAITC · · · · · · · ·
KBD . . · · · · · ·
LIN ••
Line Printer SpooLer ••••
LOOKUP • • • •
LPTQUE

Magnetic tape drivers •
Master FiLe Directory
MEMBAS • • • • •
MEMBNK • • • •
~'EMDEF
MEMDEF Program • • • •
MEMEND
Memory Management
Memory Mapping ••••••
Memory ModuLes ••••
Memory Partition ControLler.
Memory Partitions ••
MFD • • • • •
MisceLLaneous Monitor CaLls.
Monitor CaLLs

ALF • • • • • • • • •
ALphabetic conversion.
AMOS
Arguments
ASSIGN
BNKSWP
BYP • •
CalLing Format •••••
CHGMEr-'I
CLOSE
CRLF
CTRLC

· · · · · ·

· ·

· ·
· ·

· ·

DCVT •••••••••••••

2-5
2-6
2-6
2-9
2-1,
2-5
2-5
2-9
2-4
B-2
2-8
2-7
2-6
2-3
10-2
2-3
2-~

7-2,

9-2
B-4
6-10
B-4

~-3

9-1

6-20 to 6-21
A-3, A-5
B-2
3-11, B-5
8-5
3-9
B-2
3-9, B-5
3-9
3-5, 4-1
3-10 to 3-13
3-2
A-3, A-5
10-1

9-1
8-4
10-3
1-1
6-15
3-12
9-?
1-1
3-6
6-11
7-4
10-1
8-1

Page Index-4

AMOS MONITOR CALLS MANUAL

DEASGN
DELETE
DELMEM
Dis k Se rv ice
DSKALC
DSKBMR ••••••••
DSKBMW ••••••••
DSKCTG
DSKDEA
DSKDRL
DSKDRU
EXIT ••••••••••
FETCH • •
File Service
FMARK •
FMARKR
FSPEC •
GETMEM
GTDEC • • • • • • •
GTOCT • • • • • •
GTPPN • • • • • •
IN!T ••••••••
INPUT •
Input Line Processing.
JLOCK • • • • •
JOBGET
JOBIDX • • • • • •
JOBSET
JRUN
JUNLOK
JWA IT • • •
JWAITC ••••
KBD •••
LIN ••
LOOKUP ••••
Magnetic tape drivers ••
Memory Cont ro l
Miscellaneous ••••
NUM • • • • • • • •
Numeric Conversion
OCVT • • • •
OPENA
OPENI •
OPENO •
OPENR • • • • • • • •
OUTPUT •••••
PACK
PCALL • • • • • •
PFILE • • • • • • • •
Printing Conversion •
PRNAM • • • • •
PRPPN •
PTYIN •

6-16
6-15
3-6
6-16
6-18
6-1~

6-19
6-18
6-19
6-19
6-20
10-1
3-5, 4-1
6-8
6-21
6-21
6-8
3-6, 6-6
9-2
9-2
9-3
6-6, 6-9
6-13
9-1
10-2
2-1, 2-3
2-1, 2-3
2-1, 2-3
2-3
10-2
2-3
2-3
7-2, 9-1
9-2
6-10
6-20 to 6-21
3-1
10-1
9-2
8-1
8-1
6-10
6-10
6-10
6-11
6-14
8-3
10-3
8-4
8-4
8-4
8-4
7-4

Page Index-5

AMOS MONITOR CALLS MANUAL

PTYOUT
QADD
QGET
QINS
QRET •••••.•••
RAD50 Conversion
READ ••••
RENAME
REWIND
RLSE
RQST
SLEEP •
SRCH
Standard Address Argument
T AS • • •• • • • • • • • •
TAPST • • • • • • • • • • • • •
TBUF
TCRT
TerminaL Service
TIDX (obsoLete) ••••
TIN • • • • • •
TOUT
TRM •
TRMBFQ
TRMICP
TRMOCP
TTY •
TTY!
TTYIN •
TTYL
TTYOUT
TYPE
UNPACK
USRBAS
USREND • • • •
USRFRE • • • • • • • • • •
WAKE •••••••••••••
WRITE •• • • • • • • • • •
WRTFM • • •••

MPC • • • •
MTU.DVR •

NUM • • •
Numeric Conversion Monitor C~LLs
Numeric Input ••••••••••

Oct a L Input. • • • • • • • •
OctaL Output •••••••
OCVT ••••••••••••••
OPENA • • • • • • • • • •
OPENI • • • • • • • • •
OPENO •
OPENR
OUTPUT

7-5
5-3
5-3
5-3
5-3
8-2
6-11
6-15
6-20
10-2
10-2
2-3
3-5, 4-1
1-2
7-3
6-21
7-6
7-6
7-1
2-8
7-3
7-3
9-2
7-6
7-5
7-5
7-3
7-4, 7-8
7-5
7-4
7-5
1-1
8-4
3-2
3-2
3-2
2-4
6-12
6-20
3-10 to 3-13
6-20 to 6-21

9-2
8-1
9-2

9-2
R-1
8-1
6-10
6-10
6-10
6-11
6-14

Page Index-6

AMOS MONITOR CALLS MANUAL

PACK
PCALL .
P FILE •
PhysicaL Disk Record Format
PPNs •••• • • • •
Printing Conversion Monitor CaLLs
PRNAM • • • • • • • • • • • •
Project-Programmer Numbers
PRPPN • • • • • • • • • • •
Pseudo TerminaLs ••••
PTYIN • • • • • • • • •
PTYOUT

QADD
QFREE •
QGET
QINS
QRET • • • • • • • • •
QUEUE command • • • • • • • • • •
Queue System • • • • • • • • • •

ManipuLating Queue BLocks •
Obtaining a Free Queue BLock
Returning a Queue BLock ••••

RAD50 Conversion Monitor CaLLs
Random FiLe Processing •••••
Random FiLes ••••
READ • • • • • • • • • • •
RENAME
REWIND
RLSE
RQST
RUNQUE

SCNQUE
Semaphores ••••••••
SequentiaL FiLE's
SLEEP • • • • •
SPXINT • • • • •
SPXSAV • • • • •
S R,CH ••••••••

FLags
Standard Address Argument •
SYS.MAC ••••••••
SYSBAS ••••••••
SYSTEM •••••••••••
System Communication

QFREE • • • • • • • •
System Communication Area.

CLKFRQ • • • •
CLKQUE ••••••••

Page Index-7

8-3
10-3
8-4
A-1
8-4, 9-3
8-4
8-4
8-4, 9-3
8-4
7-4 to 7-5
7-4
7-5

5-3
B-6
5-3
5-3
5-3
5-2
5-1, P.-6
5-3
5-3
5-3

8-2
6-11, 6-13
A-3
6-11
6-15
6-20
10-2
10-2
B-5

8-5
10-2
A-3
2-3
B-4
8-4
3-5, 4-1
4-2
1-2
1-1, 2-1, 7-8
B-2
B-1

5-1
B-1
B-3
B-5

AMOS MONITOR CALLS MANUAL

DATE
DDBCHN
DEVTBL
DRVTRK
HLDTIM
JOBCUR
JOBESZ
JOBTBL
LPTQUE
MEMBAS
MEMBNK
MEMDEF
MEMEND
QFREE •
RUNQUE
SCNQUE
SPXINT
SPXSAV
SYSBAS
SYSTH1
TIME
TR~lDFC

TRMIDC
TRMSCN
TRMTDC
ZSYDSK

System Date •

TAB ••
TAPST
TBUF
TCRT
TerminaL Definition TabLe.
TerminaL Drivers ••••
TerminaL Input ••••
TerminaL Service Monitor CaLLs
TerminaL Status Word
TIDX (obso Lete)
TIME • • • • • •
Time of Day •
TIN •
TOUT
TRM ••
TRMBFQ ••••
TRMDFC ••••
TRMICP • • • •
TRMIDC ••••
TRMOCP
TRMSCN
TRMTDC
TTY •
TTY! •••••
TTYIN

B-3
B-1
B-1
B-5
8-3
B-2
B-2

. B-2
B-4
B-2
3-10, 8-5
3-10, 8-5
8-2
8-6
8-5
B-5
B-4
B-4
8-2
8-1
B-3
8-4
8-4
8-4
8-4
8-5
B-3

7-3
6-21
7-6
7-6
8-4
7-6, 8-4
7-2
7-1
7-2
2-8
B-3
B-3
7-3
7-3
9-2
7-6
B-4
7-5
8-4
7-5
8-4
8-4
7-3
7-4, 7-8
7-5

Pagf> Jndex-8

AMOS MONITOR CALLS MANUAL

TTYL
TTYOUT
TYPE
TYPECR
TYPESP

UFO ••
UNPACK
User FiL~ Directory.
USRBAS •••••
USREND ••••
USRFRE

WAKE
WRITE •
WRTFM •

ZSYDSK

7-4
7-5
1-1,
7-8
7-8

"-3,
8-4
A-3,
3-2
3-2
3-2

2-4
6-12
6-20

8-5

Page Index-9

7-8

A-5

A-5

AMOS MONITOR CALLS
;OFTWARE PUBLICATIONS FILE REFERENCE NUMBER:

SOFTWARE DOCUMENTATION READER'S COMMENTS

Ve appreciate your help In evaluating our documentation efforts. Please feel free to attach additional comments. If you reqUire a written response, chec

NOTE: ThiS form IS for comments on software documentation only. To submit reports on software problems, use Software
Performance Reports (SPRs), available from Alpha Micro.

'lease comment on the usefulness, organization, and clarity of thiS manual.

)Id you find errors In thiS manual? If so, please specify the error and the number of the page on which It occurred

'hat kinds of manuals would you like to see In the future?

'lease Indicate the type of reader that you represent (check all that apply).

o
o

o

Alpha Micro Dealer or OEM

Non-programmer, uSing Alpha Micro computer for.

o
o
o
o

Business applications
Education applications
Scientific applications
Other (please specify):

Programmer:
o Assembly language
o Higher-level language
o Experienced programmer
o Little programming experience
o Student
o Other (please specify):

~AME. ___ DATE. __________________ __

TLE· __ PHONENUMBER· ____________________ __

JRGANIZATION

~DDRESS: __ _

::ITY· ___ ST A TE· ___________________ ZIP OR COUNTR Y

,PLE STAPLE

FOLD
•• J.

alpha
micro

rN: SOFTWAIiIE DEPARTMENT

17881 Sky Park North
Irvine, California
92714

PLACE
STAMP
HERE

. ~ . ~
FOLD

w
Z
-J

Cl
Z o
-J
«
I
:::>
o

